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Abstract: In pharmaceutical development, structure-activity relationship studies aim to identify
characteristics of chemical structures associated with well-defined activity end points. While
this goal-driven approach is ideally suited for lead development purposes, a more exploration-
driven approach is needed to discover cell type-selective drug targeting mechanisms in complex
data sets. Growth inhibition profiles across different cancer cell lines are potentially informative
with respect to molecular mechanisms targeting the activity of anticancer agents to specific
tumor cells, yet only a small number of mechanistic associations between chemical structure
and growth inhibition profiles have been discovered to date. Here, we have applied an exhaustive
statistical analysis strategy to more than 10 000 compounds in the NCI’s anticancer agent
database to identify molecular substructures associated with specific cytotoxicity signatures
against a panel of human tumor-derived cancer cell lines (the Developmental Therapeutics
Program 60-cell line panel). Some of the most significant substructures conferring cell type-
selective cytotoxic activity include a large family of delocalized lipophilic cations; chloropurines,
chloropyrimidines, and thiazoles; organosulfur chelators and organometallic complexes; and
an unexpectedly related family of alkyl-lysophospholipids and phosphate prodrugs. Information
from cell-based assays and gene expression measurements have been related to substructures
represented in the chemical space covered by the library, yielding several candidate targeting
mechanisms.
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Introduction
The central problem in the analysis of structure-activity

relationships (SARs) is identifying characteristics of a com-
pound’s chemical structure that are associated with a specific
biological property or functional activity. SAR studies in drug
discovery focus on assays with well-defined end points, for
example, inhibition of enzymatic activity. In these assays,
potent compounds equate with promising leads. Thus, even

if compounds are screened in multiple assays, the most
promising drug leads can be ranked and prioritized on the
basis ofa priori performance thresholds set for each assay.

Growth inhibition (GI) profiles capture the specific cyto-
toxicity of a compound across a range of cell lines. Since
the important information is contained in the entire profile
rather than in responses of individual cell lines, GI profiles
are not easy to study using standard SAR approaches.
Nevertheless, GI profiles can be quite informative for basic
research into the mechanisms of anticancer drug sensitivity
and resistance, including the primary mode of action,
secondary toxicities, metabolism, and transport.1-8 While
several studies looking at cytotoxicity profiles have focused
on classification and prediction of compounds in different
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toxicity classes,1,3,4,9-15 some of these toxicity classes may
be exploited to enhance the selective activity of anticancer
agents against specific types of tumor cells.5,9,12,16-18

Understanding the mechanism through which an anticancer
agent selectively inhibits the growth of a particular cancer
cell type can have practical applications in the development
of targeted anticancer agents. Indeed, mechanistic SAR
analyses of GI profiles not only point to mechanisms through
which anticancer agents inhibit the growth of a particular
cell type but also could be used as a starting point to develop
“personalized” chemotherapeutic strategies.9 To discover
targeting mechanisms, one must start by identifying statisti-
cally significant associations between chemical structure and
growth inhibition of particular cell types. Since GI profiles
vary in a space having dimensions equal to the number of
cell lines assayed (59 in our case), identifying statistically
significant GI profiles is not a trivial amount of work.
Identifying significant associations between GI profiles and
chemical structure is even more challenging.

Here we describe the results of an exhaustive search for
associations between GI profiles and chemical structure for
more than 10 000 chemical structures in the NCI anticancer
agent database. The basic idea is to partition the compounds
into groups on the basis of whether small chemical structure
fragments called “augmented atom codes” (AACs)19 are
present in the molecule. Then for each AAC, we make a
statistical comparison of growth inhibition between com-
pounds containing the AAC and compounds lacking it, for
each cell line in the panel. The structure fragments yielding
a significant result for this comparison are then expanded
into larger fragments that determine a specific GI profile.
Further checks are made to ensure that the fragment is not
just linked to some other fragment that is the mechanistic
actor. Finally, gene expression measurements performed on
the 60 cell lines can help infer biological mechanisms
underlying each chemical structure-growth inhibition
association.10,13-16,20This method elucidates many chemical
structure-growth inhibition associations with a moderate to
high level of statistical significance. In this article, we present
the 15 discovered associations that are most significant.
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Materials and Methods
Data Source.The Developmental Therapeutics Program

(DTP) at the National Cancer Institute (NCI) has compiled
a database of roughly 41 000 small molecules that have also
been screened for chemosensitivity on a reference set of
human tumor-derived cell lines, commonly known as the
“60-cell line panel”.11,14,21For each compound, the chemical
structure is available as a connection table specifying all
chemical bonds in the molecule.

Growth inhibition (GI) measurements are available as GI50

values, the concentration of a compound slowing growth at
48 h by 50% relative to the growth of untreated cells. We
analyzed GI50 values on the log2 scale, and only considered
GI50 values for 59 cell lines for which gene expression data
are available. These 59 cell lines are the usual NCI 60 cell
lines except that breast cell line MDA-N has been omitted.
Compounds that were missing GI50 values for more than 10
of these 59 cell lines were dropped from the analysis.
Compounds for which the standard deviation of the observed
GI50 values was less than 0.3 were also dropped, leaving
10 589 compounds for further analysis. A standard deviation
of 0.3 corresponds roughly to requiring at least one-third of
the cells in a cell line to differ by more than 25% from the
mean GI50 for the compound.

Data Normalization. GI50 values were processed to
remove effects due to either the average toxicity of each
compound or the average sensitivity of each cell line. We
fit a linear model of the form GI50ij ) Ai + Bj + Rij , where
GI50ij is the experimental GI50 value for compound i in cell
line j. TheAi values correspond to differing average toxicities
across the compounds. For example, metal-containing com-
pounds tend to have lower GI50 values than compounds
containing no metal. TheBj values correspond to the overall
sensitivity of each cell line across all compounds. For
example, leukemic cell lines tend to be more sensitive to
growth inhibitory agents overall, while renal cell lines tend
to be more resistant. All subsequent analysis is carried out
on theRij values, which we will termGI50 values henceforth.
A GI50 value of zero indicates that compound i has average
toxicity in cell line j, after correcting for overall compound
toxicity and overall cell line sensitivity. Values ofGI50 much
greater than zero indicate lower than expected toxicity, and
values of GI50 much less than zero indicate higher than
expected toxicity. Missing values were filled in with zero.

Chemical Structure Descriptors.For analysis of chemi-
cal structure-activity relationships, the compounds were
computationally fragmented into a simpler set of substruc-

tures using the connection tables in the DTP database.
Specifically, we identified all possible chemical structure
fragments consisting of a central atom together with infor-
mation about the peripheral atoms to which the central atom
is directly bonded (i.e., the element type of each atom and
the order of each bond, without distinguishing aromatic,
nonaromatic, or partial bonding characteristics). These frag-
ments are called augmented atom codes (AACs)19 and have
been used for many years in QSAR studies. For example, a
central nitrogen atom with single bonds to two carbon atoms
and double bonds to one carbon atom is an AAC. This AAC
is denoted N:C1;C1;C2, where the letter before the colon is
the chemical symbol for the central atom and the letters
following the colon are the chemical symbols of the atoms
to which the central atom is bonded (each followed by a
number indicating the number of bonds to the central atom).

Initial Screening of AACs. Candidate AACs with specific
effects onGI50 are identified by comparing the averageGI50

values for compounds containing the AAC to the average
GI50 of compounds lacking it for each cell line. If this ratio
exceeds 2 or is less than1/2 in at least one cell line, then the
AAC is selected for further analysis. Only AACs present in
at least 30 compounds were considered for selection. In the
calculation of false positive rates (Vide infra), if at least 30
compounds are used to form the average, the probability of
obtaining a 2-fold change by chance in at least one of the
59 cell lines is less than 1 in 104. Since 130 AACs are present
in at least 30 compounds, it follows that the expected number
of false positives is less than 0.01.

Estimation of False Positive Rates.The false positive
rate is the probability of finding an AAC for which at least
one cell line’s meanGI50 value for compounds containing
the AAC differs by 2-fold from the meanGI50 value for
compounds lacking the AAC, by random chance. To
calculate this false positive rate, we carried out a statistical
analysis of the|Rij| values (the absolute values of the adjusted
GI50 values defined above) for compounds deemed unaffected
by biological variation in the cell lines. To identify such
compounds, we returned to the raw (unadjusted) GI50 data
and selected the compounds for which no GI50 values were
missing, and no GI50 values were at the ceiling level of 10-4

M. These 2427 compounds were sorted in ascending order
by range (greatest value minus least value across the cell
lines), and compounds with zero range were omitted. Next,
we selected 250 compounds with a range in the second
quartile, for which variation is likely due to experimental
noise in the assay. After all 59× 250 data points for these
compounds have been pooled together, the corresponding
adjusted|Rij|1.14 values closely follow an exponential distri-
bution with mean of 0.2 (data not shown). Thus, we can
simulate from the error distribution of theGI50 assay by
simulatinge from a standard exponential distribution, taking
E to be equal to (0.2e)1/1.14, and then multiplyingE by -1
with a probability of 0.5. Using 105 simulated data sets of
59 “cell lines” and 30 “compounds” from this distribution,
we found that fewer than 1 in 104 of the simulated data sets
had at least one cell line with ag2-fold change, and the
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expected number of false positives is therefore less than
130 × 10-4 (≈0.01).

Discrimination of Extreme and Average Subsets of
Compounds. For SAR analysis, a comparison was made
between the distribution ofGI50 values for compounds
containing a specific chemical substructure and the distribu-
tion of GI50 values for compounds lacking it. The comparison
was based on kernel density estimates (Gaussian kernel with
a bandwidth of 1.06σ/n1/5) prepared for each of the two sets
of compounds. Individual compounds whoseGI50 falls at a
point in the GI50 distribution where the density for com-
pounds containing the AAC is at least 3 times greater than
the density for compounds lacking the AAC are deemed to
be “extreme”, while the remaining compounds are deemed
to be “average”. Substructure expansion analysis, described
below, was then performed to determine if any structural
features beyond the AAC could be used to discriminate the
extreme from the average compounds.

SAR Analysis by Fragment Expansion.The fragment
expansion algorithm proceeds in an iterative fashion, with a
given AAC as the initial fragment. At each step, all possible
extensions of the fragment that can be obtained by adding a
single “floating atom” are considered. To determine which
atom is added, each possible extension is evaluated in terms
of its representation in the average versus extreme subsets
of compounds. Specifically, aø2 statistic is calculated
comparing the frequency with which the expanded fragment
occurs in the two compound sets. If theø2 statistic exceeds
10, if the proportion in the extreme compounds exceeds 0.6,
and if this proportion is greater than the corresponding
proportion in the average compounds, then the floating atom
is considered to be a “discriminating candidate” for the
extension. Among all discriminating candidates, the one with
the highestø2 statistic is added to the fragment. If no
discriminating candidate is found, the floating atom with the
greatest frequency in the extreme compounds is added, as
long as that frequency exceeds 0.8. This process is repeated,
joining additional floating atoms to the fragment until a
termination criterion is met. The process terminates if no
atom can be added to the fragment, or if the average
agreement between the fragment and the extreme compounds
drops below 75% of the fragment size. In this manner, each
AAC with a significant effect on GI50 is extended to a larger
fragment that is more highly specific to the distinctive pattern
of growth inhibition associated with the AAC (see Table 2
of the Supporting Information).

Gene Expression Data.Microarray measurements of gene
expression in the 59-cell line panel are used to aid in inferring
the biological and chemical mechanism underlying each
significant structure-GI association.10,13-16,20 We used the
triplicate array measurements obtained using Affymetrix
U95A chips from Novartis. Arrays were scale-normalized
to have equal medians. For each AAC’sGI50 profile (i.e.,
the 59 log ratios between the averageGI50 for compounds
containing an AAC and the averageGI50 for compounds
lacking it), we calculated Pearson correlation coefficients
between the values in theGI50 profile and log-transformed

gene expression measurements for each of the three sets of
arrays. For some analyses, the six leukemic cell lines were
excluded when correlations were formed. This reduces the
number of significant correlations by 75%, since there are
many compounds in the database exhibiting leukemia-
specific toxicity, and many genes are specifically expressed
or repressed in leukemic cell lines. Genes arising from this
relationship are unlikely to be related to the biological
response to a drug. A list of genes was prepared for each
association, where the genes are ranked according to the least
(in magnitude) of the correlation coefficients for each of the
triplicate experiments (Table 1 of the Supporting Informa-
tion).

Results
Identification of Relationships between AACs and

Chemosensitivity Profiles.The DTP database contains a
diverse set of natural products and synthetic compounds that
also have GI50 data for our reference set of 59 cell lines. We
selected 10 589 compounds with low levels of missing data
and moderate to high variation in the assay readout. In these
compounds, we identified 747 distinct AACs to use as
starting points for studying the relationship between chemical
substructures of compounds and their growth inhibitory
activity. Figure 1A shows the number of compounds match-
ing each AAC, ranked according to the number of matches
for each AAC. From the initial set of 747 AACs, we selected
for further analysis 130 AACs (bold in Figure 1A) that were
present in at least 30 compounds.

For each cell line-AAC pair, we then looked at the log
ratios of the averageGI50 for compounds containing the AAC
to the averageGI50 for compounds lacking it. Figure 1B
summarizes these fold changes over the entire database; for
each AAC, the largest fold change (in magnitude) across
the cell lines is selected, and these fold changes are plotted
as a function of rank. As discussed in Materials and Methods,
less than 0.01 AAC is expected to have a 2-fold change in
at least one cell line by chance. We found 15 AACs with
fold change exceeding 2 in at least one cell line (bold in
Figure 1B). This gives a false discovery rate of less than
0.01/15 ()0.001), so overall, the 15 selected AACs are highly
statistically significant; it is unlikely that even one of them
is a false positive.

These 15 selected AACs are represented in 1701 distinct
compounds of 10 589 that were analyzed, so they are fairly
common in the agents screened by the NCI. Several of the
15 AACs satisfy the 2-fold change condition for more than
one cell line, so there are a total of 45 AAC-cell line pairs
in which AAC-specific effects onGI50 are seen. As a result
of meeting the fold change condition, these are the most
likely AACs to be functionally significant in determining
cell type-specific growth inhibitory activity.

Applying a two-way clustering algorithm to theGI50 fold
changes in the 15 AACs and the 59 cell lines reveals that
certain sets of AACs lead to similar chemosensitivity profiles
(Figure 2). Specifically, there are several distinct clusters
that are formed by more than one agent that share similar
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cell type-selective targeting activities. There are two possible
explanations for the clusters. One explanation is that several
AACs may inhibit cell growth through a similar mechanism,
even though the AACs are contained in distinct sets of
compounds. A more trivial explanation is that several AACs
may overlap to form a common substructure so that a single
class of compounds is represented by several different AACs.

To address this issue, for each distinct pair among the 15
selected AACs, we calculated the number of compounds
containing both AACs, divided by the total number of distinct
compounds containing either AAC. Table 1 shows the results
of this analysis. Two AACs (O:H;P1 and P:O1;O1;O1;O2)
exhibit 79% overlap. Evidently, these AACs overlap to form
a phosphate group, and therefore occur in approximately the
same set of compounds. The N:C1;H1;N1 and C:N1;S1;S2

AACs exhibit 27% overlap, and no other pair of AACs
exhibits >12% overlap. Thus, with the exception of the
O:H;P1 and P:O1;O1;O1;O2 AACs, and perhaps N:C1;H1;N1
and C:N1;S1;S2, observed associations between different
AACs are likely due to similarities in the biological response
of the cells to distinct classes of compounds.

Identification of Compounds with AAC-Specific GI50

Values.To understand more completely the nature ofGI50

effects associated with particular AACs, for each of the 45
AAC-cell line pairs, density plots were prepared showing
theGI50 distribution for compounds containing the AAC and
the GI50 distribution for compounds lacking it (Figure 3).
After visual inspection, many of these distributions had a
strong multimodal character or were heavily skewed. This
suggests that the observed 2-fold difference in the meanGI50

Figure 1. Survey of AACs represented in the NCI anticancer agent database. (A) Plot of the number of compounds matching
each of the 747 AACs on the log scale, ranked by decreasing number of matches. The bold line covers 110 fragments contained
in at least 30 compounds that are used in the subsequent analysis. (B) Rank plot showing the log2 fold changes between the
average GI50 for compounds containing a given AAC relative to the average GI50 for compounds lacking the AAC. The fold
change that is shown is the largest in magnitude over 59 cell lines. The bold line covers the 15 fragments that have a g2-fold
change in at least one cell line.

Figure 2. Cluster analysis of cell lines and structure fragments. For each AAC-cell line pair, the log2 GI50 ratio is calculated
between compounds containing the AAC and compounds lacking it. Results were clustered with respect to both AACs and cell
lines, and visualized as a heat map. Only the 15 AACs with a 2-fold change in at least on cell line are shown.
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is not uniquely determined by the AAC, since many of the
compounds containing the AAC have averageGI50 values.
This result is consistent with the fact that the activity of a
molecule in a particular cell line is affected in many complex

ways by the structure and physicochemical properties of the
entire molecule, and not just by any individual AAC.
Nevertheless, the skewness and multimodal nature of theGI50

distribution indicate that a substantial minority of compounds

Figure 3. GI50 densities for each cell line-AAC pair for which a 2-fold difference exists in the GI50 values between compounds
containing the AAC (s) and compounds lacking it (- - -). Note that most density plots are multimodal or highly skewed.
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containing each AAC exhibits extreme toxicity or resistance
against one or more cell lines.

To distinguish the compounds with extreme GI50 values
from those with average GI50 values based on the GI50

densities, we partitioned the compounds containing each
structure fragment into two subsets. As the extreme GI50

group, we selected compounds whose GI50 values fall into a
region of the GI50 distribution where the density for
compounds containing the fragment is at least 3 times greater
than the density for compounds lacking the fragment. All
other compounds containing the fragment are in the average
GI50 group. This partition can be made separately for each
cell line with a 2-fold effect. For AACs with more than one
cell line meeting the 2-fold threshold, we found a high degree
of similarity in the extreme compounds across the cell lines.
Therefore, we pooled all compounds that were extreme in
at least one cell line into the extreme group, and the
remaining compounds were placed into the average group.
This gives a single partition of the compounds containing
each AAC.

The fragment expansion algorithm was then used to
expand each AAC into two larger fragments: one that was
highly specific to the averageGI50 compounds and one that
was highly specific to the extremeGI50 compounds. Illustrat-
ing the expansion algorithm result for the C:H1;H1;H1;S1
AAC clearly demonstrates how this statistical technique
identifies large molecular fragments that are responsible for
differential cytotoxicity, starting from an AAC core (Figure
4A). By the fourth step of the expansion, the substructure
matches 30 of 40 of the extremeGI50 compounds, but only
matches 13 of 184 of the averageGI50 compounds. Applied
to the 15 AACs selected in the initial screen, the fragment
expansion algorithm is able to identify larger substructural
motifs that are associated with differential cytotoxicity
profiles in several of the compounds (Figure 4B and Table
2 of the Supporting Information).

Structure-Activity Relationship Analysis. After frag-
ment expansion analysis, we proceeded to analyze SARs
between the subset of compounds possessing the expanded
template incorporating the AAC and the particular observed
cytotoxicity profiles. Additional insights relevant to the
mechanism of action of the compounds could be obtained
by (1) analyzing the scientific literature in terms of the

Table 1. Co-Occurrence of AACs in Individual Molecules,
Expressed as a Percentage of Molecules Showing the Two
Indicated AACsa

a The overlap is greatest between O:H1;P1 and P:O1;O1;O1;O2
(phosphates) AACs, followed by C:N1;N1;S2 and N:C1;H1;N1 AACs
(carbothioamides).

Figure 4. Results of the fragment expansion algorithm. (A)
Partial results obtained during the stepwise expansion of the
S:H1;H1;H1;C1 AAC. Fractions indicate the representation of
the fragment in the extreme vs average group of compounds.
As the fragment is expanded, greater discrimination between
the two groups of compounds is achieved. (B) Expanded
structures for the most significant extreme vs average GI50

AACs, together with the cell lines for which a g2-fold change
in the GI50 value is found in association with the AAC.
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reported mechanism of action of compounds possessing the
expanded AAC, (2) inspecting the structures of the com-
pounds possessing the expanded AAC for global patterns
relating the structure and function of the compounds, and
(3) finding genes with a high or low level of expression in
the cell lines that are most sensitive or resistant to molecules
containing a particular substructure. Because transcriptional
profiling data are available and some of the molecules in
the library have been previously studied in the scientific
literature, candidate mechanisms of action for many of the
structure fragments identified by our method can be pro-
posed. In the subsections that follow, each expanded AAC
identified in this study is analyzed in terms of how its specific
cytotoxicity profile is associated with differential gene
expression of the cell line that was tested, and how the
chemical structure of the expanded AAC (or the lack of
ability to expand the AAC) suggests candidate mechanisms
determining the selective activity of anticancer agents (or
lack thereof) against specific cancer cell lines.

(1) Delocalized Imminium Cations. The N:C1;C1;C2
(imminium) AAC is generally embedded in a larger aromatic,
conjugated structure (Figure 5). Because of the highly
conjugated character of these molecules, the positive charge
is delocalized. Delocalized lipophilic cations are known to
accumulate in mitochondria, as a result of the electrochemical
potential across the mitochondrial membrane of actively
respiring cells.22,23 At least three of the compounds sharing
the AAC have been previously demonstrated to accumulate
in mitochondria (Figure 5): the styryl compound 4M2M24,25

(NSC 4239), ethidium bromide26-30 (NSC 268986), and

dequalinium23,31,32 (NSC 166454). Ethidium bromide and
dequalinium are toxic to mitochondria as they specifically
induce mitochondrial DNA depletion.23,26,30F16,33,34a close
styryl analogue of NSC 4239, also accumulates in mito-
chondria and induces apoptosis by perturbing respiratory
function.

To gain additional insights into the toxicity signature of
these compounds, we analyzed the genes that were over- or
underexpressed in cell lines that were sensitive and resistant
to these compounds. We found that compounds containing
this arrangement are relatively more toxic to cell lines SF-
268, SN-12C, and SNB-19 and relatively less toxic to cell
lines HCT-15, ADR-RES, and SF-268 (Figure 3). Upon
examination of gene expression data for all cell lines, the
N:C1;C1;C2GI50 profile is more correlated with the levels
of the ABCB1 (also known as MDR1 or P-glycoprotein)
gene than any other gene (Table 1 of the Supporting
Information). For the three copies of ABCB1 in three
transcriptional profiling experiments, the nine correlations
(r) were as follows: 0.57, 0.62, 0.64, 0.54, 0.58, 0.56, 0.49,
0.51, and 0.56. In addition, theGI50 profile is strongly
correlated (r ) 0.62) with independent reports of MDR-1
(ABCB1) protein expression data,6 and with the rates of
rhodamine efflux.35 These results suggest that, while these

(22) Rosania, G. R. Supertargeted chemistry: identifying relationships
between molecular structures and their sub-cellular distribution.
Curr. Top. Med. Chem.2003, 3, 659-685.

(23) Modica-Napolitano, J. S.; Aprille, J. R. Delocalized lipophilic
cations selectively target the mitochondria of carcinoma cells.AdV.
Drug DeliVery ReV. 2001, 49, 63-70.

(24) Shedden, K.; Brumer, J.; Chang, Y. T.; Rosania, G. R. Chemo-
informatic analysis of a supertargeted combinatorial library of
styryl molecules.J. Chem. Inf. Comput. Sci.2003, 43, 2068-
2080.

(25) Rosania, G. R.; Lee, J. W.; Ding, L.; Yoon, H. S.; Chang, Y. T.
Combinatorial approach to organelle-targeted fluorescent library
based on the styryl scaffold.J. Am. Chem. Soc.2003, 125, 1130-
1131.

(26) Seidel-Rogol, B. L.; Shadel, G. S. Modulation of mitochondrial
transcription in response to mtDNA depletion and repletion in
HeLa cells.Nucleic Acids Res.2002, 30, 1929-1934.

(27) Miller, S. W.; Trimmer, P. A.; Parker, W. D., Jr.; Davis, R. E.
Creation and characterization of mitochondrial DNA-depleted cell
lines with “neuronal-like” properties.J. Neurochem.1996, 67,
1897-1907.

(28) Herzberg, N. H.; Middelkoop, E.; Adorf, M.; Dekker, H. L.; Van
Galen, M. J.; Van den Berg, M.; Bolhuis, P. A.; Van den Bogert,
C. Mitochondria in cultured human muscle cells depleted of
mitochondrial DNA.Eur. J. Cell Biol.1993, 61, 400-408.

(29) Hayashi, J.; Takemitsu, M.; Goto, Y.; Nonaka, I. Human mito-
chondria and mitochondrial genome function as a single dynamic
cellular unit.J. Cell Biol. 1994, 125, 43-50.

(30) Hayakawa, T.; Noda, M.; Yasuda, K.; Yorifuji, H.; Taniguchi,
S.; Miwa, I.; Sakura, H.; Terauchi, Y.; Hayashi, J.; Sharp, G. W.;
Kanazawa, Y.; Akanuma, Y.; Yazaki, Y.; Kadowaki, T. Ethidium
bromide-induced inhibition of mitochondrial gene transcription
suppresses glucose-stimulated insulin release in the mouse
pancreaticâ-cell line âHC9. J. Biol. Chem.1998, 273, 20300-
20307.

(31) Weiss, M. J.; Wong, J. R.; Ha, C. S.; Bleday, R.; Salem, R. R.;
Steele, G. D., Jr.; Chen, L. B. Dequalinium, a topical antimicrobial
agent, displays anticarcinoma activity based on selective mito-
chondrial accumulation.Proc. Natl. Acad. Sci. U.S.A.1987, 84,
5444-5448.

(32) Gamboa-Vujicic, G.; Emma, D. A.; Liao, S. Y.; Fuchtner, C.;
Manetta, A. Toxicity of the mitochondrial poison dequalinium
chloride in a murine model system.J. Pharm. Sci.1993, 82, 231-
235.

(33) Fantin, V. R.; Leder, P. F16, a mitochondriotoxic compound,
triggers apoptosis or necrosis depending on the genetic background
of the target carcinoma cell.Cancer Res.2004, 64, 329-336.

(34) Fantin, V. R.; Berardi, M. J.; Scorrano, L.; Korsmeyer, S. J.; Leder,
P. A novel mitochondriotoxic small molecule that selectively
inhibits tumor cell growth.Cancer Cell2002, 2, 29-42.

Figure 5. Selected compounds containing the expanded
N;C1;C1;C2 AAC (expanded fragments in bold).
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compounds may be accumulating in the mitochondria of
actively respiring cells, the ABCB1 multidrug resistance
mechanism may be countering mitochondrial accumulation
and toxicity.

That lipophilic cations such as ethidium bromide, dequal-
inium, and styryl compound 4M2M are substrates for
P-glycoprotein is a testable hypothesis. Several molecules
possessing delocalized imminium cations have been noted
in the literature as good substrates for P-glycoprotein-
mediated multidrug resistance, suggesting that ABCB1 may
be a general detoxification mechanism for this class of
compounds. For example, various rhodamines35-37 and the
cyanine dye JC138 are routinely used for mitochondrial
labeling of living cells, yet they also are also substrates for
P-glycoprotein.

Interestingly, the substructure expansion algorithm did not
identify an extension of the N:C1;C1;C2 AAC that was
specific to the extremeGI50 group of compounds, which
indicates that there may be other toxicity mechanisms
associated with the toxicity of N:C1;C1;C2, perhaps inde-
pendent of mitochondrial accumulation. For example, NSC
4238, a closely related isomer of NSC4239, accumulates in
other parts of the cell24,25 and is represented in the average
GI50 group. However, there was a significant extension of
the AAC that was specific to averageGI50 compounds. We
found that the C2 atom in the fragment has a single bond to
sulfur in 40-50% of compounds with averageGI50 values,
while for compounds containing extremeGI50 values, at most
6% had a C2-S link. This suggests that incorporating a
single sulfur atom into compounds containing N:C1;C1;C2
may substantially inhibit their ability to bind P-glycoprotein,
potentially reducing the susceptibility of N:C1;C1;C2-
containing compounds to P-glycoprotein-mediated drug
efflux.

(2) Alkyl-Lysophospholipid Analogues. Two of the
AACs (O:C1;S1 and P:O1;O1;O1;O2) correspond to sul-
fonates (Figure 6A) and phosphates (Figure 6B), respectively,
and have relatively similarGI50 profiles (Figure 2). In the
phosphate subset of compounds, there are at least two distinct
structural subclasses: phosphate prodrugs [both nucleotides
(NSC 81206; Figure 6B) and non-nucleotides (NSC 610458;
Figure 6B)] and alkyl-lysophospholipids (NSC 324368;
Figure 6B). These two classes of compounds are expected
to have highly distinct cell type-specific targeting mecha-

nisms, as phosphate prodrugs are presumably active only
after phosphate hydrolysis,9 while the alkyl-lysophospholipids
are active without hydrolysis.39-41 The sulfonates (NSC
268965, 72151, and 281817; Figure 6A) are somewhat
similar to each other and structurally resemble the alkyl-
lysophospholipid compounds because of their polar meth-
anesulfonate headgroup and long hydrophobic tail.

Arguably, alkyl-lysophospholipid analogues are the main
determinant of the cytotoxicity profile for this entire group
of compounds, for three reasons. First, the 13 alkyl-
lysophospholipids (or related analogues) exhibit more ex-

(35) Lee, J. S.; Paull, K.; Alvarez, M.; Hose, C.; Monks, A.; Grever,
M.; Fojo, A. T.; Bates, S. E. Rhodamine efflux patterns predict
P-glycoprotein substrates in the National Cancer Institute drug
screen.Mol. Pharmacol.1994, 46, 627-638.

(36) Saengkhae, C.; Loetchutinat, C.; Garnier-Suillerot, A. Kinetic
analysis of rhodamines efflux mediated by the multidrug resistance
protein (MRP1).Biophys. J.2003, 85, 2006-2014.

(37) Loetchutinat, C.; Saengkhae, C.; Marbeuf-Gueye, C.; Garnier-
Suillerot, A. New insights into the P-glycoprotein-mediated
effluxes of rhodamines.Eur. J. Biochem.2003, 270, 476-485.

(38) Kuhnel, J. M.; Perrot, J. Y.; Faussat, A. M.; Marie, J. P.; Schwaller,
M. A. Functional assay of multidrug resistant cells using JC-1, a
carbocyanine fluorescent probe.Leukemia1997, 11, 1147-1155.

(39) Van Der Luit, A. H.; Budde, M.; Verheij, M.; Van Blitterswijk,
W. J. Different modes of internalization of apoptotic alkyl-
lysophospholipid and cell-rescuing lysophosphatidylcholine.Bio-
chem. J.2003, 374, 747-753.

(40) van der Luit, A. H.; Budde, M.; Ruurs, P.; Verheij, M.; van
Blitterswijk, W. J. Alkyl-lysophospholipid accumulates in lipid
rafts and induces apoptosis via raft-dependent endocytosis and
inhibition of phosphatidylcholine synthesis.J. Biol. Chem.2002,
277, 39541-39547.

(41) Bergmann, J.; Junghahn, I.; Brachwitz, H.; Langen, P. Multiple
effects of antitumor alkyl-lysophospholipid analogs on the cyto-
solic free Ca2+ concentration in a normal and a breast cancer cell
line. Anticancer Res.1994, 14, 1549-1556.

Figure 6. Selected compounds containing the expanded (A)
O:C1;S1 and (B) P:O1;O1;O1;O2 and O:H1;P1 AACs (ex-
panded fragments in bold).
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tremeGI50 values, having a median absolute value (across
compounds and cell lines) of 1.28 compared to 0.62 for the
other 39 compounds possessing the phosphate AAC. Second,
if we calculate the GI50 profile based on the alkyl-lysophos-
pholipid analogues and compare it to the profile obtained
using all 52 compounds containing the AAC, the resulting
profiles have a strong correlation of 0.87 even though the
alkyl-lysophospholipids are a minority of the 52 compounds.
Third, if we consider the correlations between individual non-
alkyl-lysophospholipids and the alkyl-lysophospholipid-
derived GI50 profile, the mean absolute correlation is only
0.17, and only 8 of 39 compounds have a correlation greater
than 0.3. Taken together, this indicates that the phosphate
and/or sulfonateGI50 profile is primarily determined by a
cell type-specific cytotoxic activity of alkyl-lysophospholipid-
like molecules and not by the cell type-specific targeting of
phosphate and/or sulfonate prodrugs.

Interestingly, among the compounds that were clearly
different from alkyl-lysophospholipid, several displayed a
relatively high correlation with the mean alkyl-lysophos-
pholipid GI50 levels. These included nucleoside phosphates
such as NSC 670654 (not shown;r ) 0.72) and phosphate
prodrugs such as NSC 610458 (Figure 6B; camptothecin
phosphate,r ) 0.57). Camptothecin was present in the data-
base in both phosphorylated and dephosphorylated forms.
Unexpectedly, theGI50 values for camptothecin phosphate
showed higher correlation with the alkyl-lysophospholipid
signature (r ) 0.57) than with dephosphorylated campto-
thecin (r ) 0.32, 0.41, and 0.47 in three replications). This
suggests that the cell type-specific targeting mechanism of
camptothecin phosphate may be related to its similarity to
alkyl-lysophospholipids, rather than to its similarity to
camptothecin. Thus, camptothecin phosphate behaves as an
alkyl-lysophospholipid analogue.

The potential mechanistic similarity between phosphate
prodrugs and alkyl-lysophospholipids is important, because
alkyl-lysophospholipids behave as surfactants42 and affect
the cell surface receptor-mediated intracellular signaling
mechanism.41,43 Interestingly, TNFR (tumor necrosis factor
receptor) and PKIA (inhibitor subunit of protein kinase A)
were among the 10 genes having strongest correlation with
the P:O1;O1;O1;O2GI50 profile (r ) -0.58, -0.40, and
-0.54 for TNFR andr ) -0.46, -0.44, and-0.47 for
PKIA, in triplicate experiments). Both TNFR and PKIA are
components of important mediators of intracellular signal
transduction pathways.

(3) Nucleobase and Nucleoside Analogues.Three of the
AACs, C:C1;Cl1;N2, C:Cl1;N1;N2, and C:N2;S1;S1, are
embedded in a chloropyrimidine [NSC 373854 and 699704
(Figure 7A) and NSC 58573 (Figure 7B)], chloropurine [NSC

614491 (Figure 7A) and NSC 685829 (Figure 7B)], or
thiazolo/thiazolium [NSC 657718, 699666, and 699668
(Figure 7C)] substructures. These compounds exhibit similar
patterns of resistance and sensitivity across the cell lines
(Figure 2), and are particularly active against the CAKI-1
renal cell line (Figure 3), a cell line that tends to be relatively
resistant to many other anticancer agents. While chlorinated
pyrimidines and purines are clearly related to each other,
their relationship with thiazolo/thiazolium compounds is less
obvious.

Analysis of gene expression data in relation to the
cytotoxicity profiles of these compounds reveals that cell
type-specific uptake and transport of nucleobase or nucleo-
side analogues44-46 may constitute their primary targeting
mechanism. There are two transporter genes that are par-
ticularly suggestive in this regard: the SLC29A1 gene
overexpressed in sensitive cell lines (r ) -0.43,-0.41, and

(42) Stafford, R. E.; Fanni, T.; Dennis, E. A. Interfacial properties and
critical micelle concentration of lysophospholipids.Biochemistry
1989, 28, 5113-5120.

(43) Yan, J. J.; Jung, J. S.; Lee, J. E.; Lee, J.; Huh, S. O.; Kim, H. S.;
Jung, K. C.; Cho, J. Y.; Nam, J. S.; Suh, H. W.; Kim, Y. H.;
Song, D. K. Therapeutic effects of lysophosphatidylcholine in
experimental sepsis.Nat. Med.2004, 10, 161-167.

(44) Mangravite, L. M.; Badagnani, I.; Giacomini, K. M. Nucleoside
transporters in the disposition and targeting of nucleoside analogs
in the kidney.Eur. J. Pharmacol.2003, 479, 269-281.

(45) Lu, X.; Gong, S.; Monks, A.; Zaharevitz, D.; Moscow, J. A.
Correlation of nucleoside and nucleobase transporter gene expres-
sion with antimetabolite drug cytotoxicity.J. Exp. Ther. Oncol.
2002, 2, 200-212.

(46) Baldwin, S. A.; Beal, P. R.; Yao, S. Y.; King, A. E.; Cass, C. E.;
Young, J. D. The equilibrative nucleoside transporter family,
SLC29.Pfluegers Arch.2004, 447, 735-743.

Figure 7. Selected compounds containing the expanded (A)
C:C1;Cl1;N2, (B) C:Cl1;N1;N2, and (C) C:N2;S1;S1 AACs
(expanded fragments in bold).
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-0.51 for correlations with C:Cl1;N1;N2 in triplicate experi-
ments;r ) -0.43,-0.41, and-0.51 for correlations with
C:C1;Cl1;N2 in triplicate experiments) and the ABCB6 gene
overexpressed in resistant cell lines (r ) 0.55, 0.43, and 0.50
for correlations with C:C1;Cl1,N2 in triplicate experiments;
r ) 0.48, 0.39, and 0.47 for correlations with C:Cl1;N1;N2
in triplicate experiments). For thiazoles, the SLC29A2 gene,
a close relative of SLC29A1, is associated with sensitivity
(Table 1 of the Supporting Information).

The mitochondrial localization and transport function of
both SLC29 and ABCB6 genes also suggest a mitochondrial
toxicity mechanism. The SLC29 genes are a family of
nucleoside and nucleobase transporters, with a high level of
expression in the kidney.46 SLC29A1, also known as hENT1,
is an equilibrative, nucleoside membrane transporter respon-
sible for the disposition of nucleoside analogues in the
urine.44,46 SLC29A2 is a closely related nucleobase trans-
porter.46 Recently, localization of hENT1 to mitochondria
suggests that it may also be a mitochondrial nucleotide
exchanger involved in the transport of nucleosides across
the mitochondrial membrane.47 In this regard, hENT1
expression has been associated with the toxicity of a variety
of antiviral and anticancer nucleosides.44,45,47Less is known
about the function of the ABCB6 gene, although it is a
mitochondrial membrane protein homologous to other trans-
membrane transporters,48,49 and its mutation has been im-
plicated in disorders of mitochondrial iron homeostasis.

(4) Organosulfur Compounds and Organometallic
Complexes. The expanded template structures of four
different AACs belong to a family of metal chelators and
organometallic complexes. These AACs are C:N1;N1;S2
[thiosemicarbazones and hydrazinecarbothioamides (Figure
8A,B)], N:C1;N1 (Figure 8B,C), N:C1;H1;N1 (Figure 8A),
and C:N1;S1;S2 [carbodithioates (Figure 8D)]. These metal
complexes possess above average growth inhibitory activity
against all leukemic cell lines, as well as against several solid
tumor cell lines (Figures 2 and 3). Deducing drug sensitivity
or resistance mechanisms from gene expression values is
challenging in this case. Because of tissue-specific differences
in gene expression, the toxicity and resistance of any agent
that is active against a particular tissue type (e.g., leukemic
cells) will correlate with every gene that is relatively over-
or underexpressed in that tissue type. Since leukemic cells
generally grow in suspension, they do not form an extracel-
lular matrix and fail to express cytoskeletal genes involved
in cell spreading and adhesion. For this reason, numerous

genes such as collagens and other cytoskeletal constituents
are associated with the toxicity profile of this class of
compounds (Table 1 of the Supporting Information). Thus,
while these associations may be mechanistically significant
to some extent, it is likely that many of them are indirectly
associated with toxicity. Consequently, they are considered
uninformative with respect to the mechanism of action of
the drug.

Therefore, instead of relying on gene expression data to
analyze the targeting mechanism of the cluster, we could
gain insights directly from structure-activity relationships
observed in this subset of compounds. Expanded templates
of the C:N1;N1;S2 AAC overlap with N:C1:N1 and
N:C1;H1;N AACs (Table 1), forming the tridentate N*-
N*-S* metal binding carbothioamide motif.50-54 The un-
complexed N*-N*-S* thiosemicarbazones [NSC 95678,
319725, and 667870 (Figure 8A)] tend to be 1 or 2 orders(47) Lai, Y.; Tse, C. M.; Unadkat, J. D. Mitochondrial expression of

the human equilibrative nucleoside transporter 1 (hENT1) results
in enhanced mitochondrial toxicity of antiviral drugs.J. Biol.
Chem.2004, 279, 4490-4497.

(48) Mitsuhashi, N.; Miki, T.; Senbongi, H.; Yokoi, N.; Yano, H.;
Miyazaki, M.; Nakajima, N.; Iwanaga, T.; Yokoyama, Y.; Shibata,
T.; Seino, S. MTABC3, a novel mitochondrial ATP-binding
cassette protein involved in iron homeostasis.J. Biol. Chem.2000,
275, 17536-17540.

(49) Lill, R.; Kispal, G. Mitochondrial ABC transporters.Res. Micro-
biol. 2001, 152, 331-340.

(50) Nocentini, G.; Federici, F.; Armellini, R.; Franchetti, P.; Barzi,
A. Isolation of two cellular lines resistant to ribonucleotide
reductase inhibitors to investigate the inhibitory activity of 2,2′-
bipyridyl-6-carbothioamide.Anticancer Drugs1990, 1, 171-177.

(51) Nocentini, G.; Barzi, A. The 2,2′-bipyridyl-6-carbothioamide
copper(II) complex differs from the iron(II) complex in its
biochemical effects in tumor cells, suggesting possible differences
in the mechanism leading to cytotoxicity.Biochem. Pharmacol.
1996, 52, 65-71.

Figure 8. Selected compounds containing the expanded (A)
N:C1;H1;N1 and C:N1;N1;S2, (B) N:C1;N1 and C:N1;N1;S2,
(C) N:C1;N1, and (D) C:N1;S1;S2 AACs (expanded fragments
in bold).
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of magnitude less toxic than the complexed N*-N*-S*
carbothioamides [NSC 635451, 641297, and 654376 (Figure
8B and data not shown)], indicating that the toxicity of these
compounds is most likely mediated through the bound metal.
Nevertheless, metal binding itself is not the primary deter-
minant of the cell type-specific targeting mechanism, as
uncomplexed carbothioamides (Figure 8A) possess cytotox-
icity profiles similar to those of metal complexes (Figure
8B and data not shown).

Since N:C1;N1 AAC represents the most structurally
diverse of all organometallic complexes and is often part of
molecules that do not contain sulfur atoms [NSC 630128
and 625542 (Figure 8C)], it appears that the sulfur atom may
not be an essential component for the targeting mechanism
of this cluster of compounds. The N:C1;N1 AAC forms a
complex with a variety of metals [for example, Ru (NSC
630128), Ni (NSC 625542), and Cu (NSC 638287); Figure
8C], in a variety of different binding modes. Some of
the N:C1;N1 AAC-containing compounds are the tridentate
N*-N*-S* carbothioamides in metal-bound form [NSC
635451, 641297, and 654376 (Figure 8B)], overlapping with
the C:N1;N1;S2 AAC. Others are in a class of their own
[for example, NSC 630128 and 625542 (Figure 8C)] and
bear little resemblance to the other metal chelators that have
been identified. Thus, the targeted activity of many organo-
sulfur compounds appears to be associated with a general
activation or resistance response to organometallic com-
plexes, and not very specific to a particular type of complex.

Consistent with this observation, the C:N1;S1;S2 AAC
[carbodithioates (Figure 8D)] identifies a related type of
metal-chelating agent with a unique metal binding mode
[NSC 647062, 625493, and 625501 (Figure 8D)]. While
some of the C:N1;S1;S2 compounds bind to metals as
monomers [NSC 625493 (Figure 8D)], others do so as dimers
and trimers [NSC 625501 and 647062 (Figure 8D)]. Most
importantly, unlike the case with other organometallic
complexes, fragment expansion analysis of the C:N1;S1;S2
AAC reveals that antimony (Sb) complexes are almost
exclusively associated with extreme toxicity signatures for
this group of compounds (data not shown). Whether Sb
increases the targeted cytotoxicity of the thiosemicarbazones
and hydrazinecarbothioamides is a question that would need
to be addressed experimentally.

(5) Thiocolchicines and Podophyllotoxins. The
C:H1;H1;H1;S1 [methylthioether (Figure 9A)] and
C:H1;H1;O1;O1 AACs [1,3-dioxo (Figure 9B)] are embed-
ded in chemical structures revealing a remarkable degree of
structural relatedness. In the case of the C:H1;H1;H1;S1

compounds [for example, NSC 186301, 111702, and 650773
(Figure 9A)], the C:H1;H1;H1;S1 AAC is often attached to
a rigid, planar scaffold. A di- or trimethoxy- or hydroxy-
phenyl group is generally found at the opposite end of this
structure. Similarly, in the case of 1,3-dioxo compounds, a
rigid,heterocyclicaromaticsystembridgestheC:H1;H1;O1;O1
AAC to a mono-, di-, or trimethoxyphenyl group [for
example, NSC 211488, 403148, and 350102 (Figure 9B)].
Compounds containing either of these AACs are active
against a broad variety of cell lines from different tissues
(Figure 2), yet tend to be less active against TK-10 (renal),
OVCAR-4 and OVCAR-5 (ovarian), EKVX (non-small cell
lung cancer), T-47D (breast), and UACC257 (melanoma)
cells (Figures 2 and 3).

Analysis of the scientific literature revealed that the
similarities between these compounds are most likely related
to their activity as microtubule inhibitors, and the observed
SAR is related to their tubulin binding mode.55-59 The
C:H1;H1;H1:S1 AAC is characteristic of the thiocolchicines
[for example, NSC 186301 (Figure 9A)], a family of well-
characterized microtubule-depolymerizing compounds, while
the C:H1;H1;O1;O1 AAC is characteristic of podophyllo-
toxins [NSC 211488 and 403148 (Figure 9B)], a different

(52) Nocentini, G.; Barzi, A. Antitumor activity of 2,2′-bipyridyl-6-
carbothioamide: a ribonucleotide reductase inhibitor.Gen. Phar-
macol.1997, 29, 701-706.

(53) Antonini, I.; Cristalli, G.; Franchetti, P.; Grifantini, M.; Martelli,
S.; Filippeschi, S. 2,2′-Bipyridyl-6-carbothioamide derivatives as
potential antitumor agents.Farmaco1986, 41, 346-354.

(54) Antonini, I.; Claudi, F.; Cristalli, G.; Franchetti, P.; Grifantini,
M.; Martelli, S. N*-N*-S* tridentate ligand system as potential
antitumor agents.J. Med. Chem.1981, 24, 1181-1184.

(55) Wolff, J.; Knipling, L.; Cahnmann, H. J.; Palumbo, G. Direct
photoaffinity labeling of tubulin with colchicine.Proc. Natl. Acad.
Sci. U.S.A.1991, 88, 2820-2824.

(56) Sackett, D. L. Podophyllotoxin, steganacin and combretastatin:
natural products that bind at the colchicine site of tubulin.
Pharmacol. Ther.1993, 59, 163-228.

(57) Luduena, R. F.; Roach, M. C. Tubulin sulfhydryl groups as probes
and targets for antimitotic and antimicrotubule agents.Pharmacol.
Ther.1991, 49, 133-152.

(58) Correia, J. J. Effects of antimitotic agents on tubulin-nucleotide
interactions.Pharmacol. Ther.1991, 52, 127-147.

(59) Burns, R. G. Analysis of the colchicine-binding site ofâ-tubulin.
FEBS Lett.1992, 297, 205-208.

Figure 9. Selected compounds containing the expanded (A)
C:H1;H1;H1;S1 and (B) C:H1;H1;O1;O1 AACs (expanded
fragments in bold).
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class of well-characterized microtubule inhibitors that are
known to interact with the colchicine-binding site of tubulin.
While several extreme compounds in this cluster are neither
thiocholchicines nor podophyllotoxins [for example, purine
compound NSC 111702 and styryl compound NSC 650773
(Figure 9A)], key structural features necessary for tubulin
binding are readily apparent.

(6) Disulfides and Quinazolinones.Lastly, less informa-
tion could be gleaned by analyzing the structure of the
remaining two classes of compounds, illustrating the limita-
tions of the approach. The S:C1;S1 AAC characterizes
compounds containing a disulfide bond (Figure 10A) and
could not be expanded to a larger substructure template
(Figure 4). Visual inspection of these compounds revealed
a remarkably degree of structural diversity (Figure 10A),
represented by the diallyl sulfide (NSC 29228), dithiolenou-
racil (NSC 684074), and other thiopyran-containing com-
pounds (NSC 686349). Like the organometallic complexes,
disulfide-containing compounds exhibit above average toxic-
ity against all leukemic cells. This makes it difficult to
identify genes that are specifically associated with the
molecular mechanism of action of these compounds.

The expanded C:C1;H1;N1;N1 AAC template identifies
a family of closely related quinazolinones [NSC 113764,
175639, and 263637 (Figure 10B)]. These quinazolinones
are most active against the multidrug resistant NCI-ADR and
HCT15 cell lines (Figures 2 and 3), which is suggestive of
their ability to act as P-glycoprotein inhibitors as reported
in the scientific literature.60 However, gene expression data
reveal that the activity of these compounds is correlated with
genes whose mechanistic significance is unclear. These genes
include histone deacetylase 9 (r ) 0.39, 0.44, and 0.46, in

triplicate experiments) and thymosinâ4 (r ) 0.45, 0.42, and
0.46, in triplicate experiments), and are negatively correlated
with the expression of the TSSC3 gene (r ) -0.44,-0.43,
and-0.45, in triplicate experiments).

Discussion
We have developed a chemoinformatic analysis strategy

and applied it to the NCI’s anticancer agent database to
identify candidate molecular mechanisms conferring cell
type-selective anticancer drug activity. For analysis, each
compound in a database is computationally broken down into
fragments comprised of an individual atom bonded to its
immediate neighbors (AAC). AACs are then used to identify
associated toxicity signatures using a rigorous statistical
comparison between compounds containing and lacking the
AAC. Once a toxicity signature is identified, the AAC is
expanded, yielding a larger substructure associated with
toxicity. Gene expression measurements on the 59 cell lines
are then used to infer biological mechanisms underlying the
associations between chemical structures and toxicity pro-
files. This strategy should also be generally applicable to
the exploration of complex chemical structure-activity
relationships in large data sets.

At the outset, we hypothesized that individual AACs could
serve as “markers” for larger structural motifs associated with
specific bioactivity profiles, just as conserved amino acids
in the active site of proteins serve to identify classes of
proteins catalyzing a specific type of chemical reaction.
Individual AACs could be expanded to familiar substructures
associated with known drug toxicity and resistance mecha-
nisms, confirming our hypothesis. In addition, analysis of
gene expression patterns allows us to infer several hypotheti-
cal associations between specific chemical structures and
genes over- or underexpressed in sensitive and resistant cell
lines. One of these associations involves a mitochondrial/
P-glycoprotein detoxification axis, associated with lipophillic
cations harboring the N:C1;C1;C2 AAC. Another one of
these associations involves a relationship among certain
classes of sulfonate compounds, phosphate prodrugs, and the
mechanism of action of alkyl-lysophospholipid analogues.
Yet another one involves an association among a variety of
chloropyrimidines, chloropurine, and thiazole anticancer
agents and membrane transport mechanisms previously
associated with mitochondrial toxicity. Lastly, we have
identified a large group of organosulfur compounds whose
cell type-selective activity appears to be more closely
associated with the bound metal than with the chemical
structure of the chelator.

What are the advantages and disadvantages of using AACs
as a starting point for SAR studies in cell-based assays?
Previously, it had been shown that the cell type-selective
toxicity of small molecules against multiple cancer cell lines
is dependent on substructural motifs.5,7,12,16,17This is con-
sistent with the fact that the cytotoxic or growth inhibitory
activity of molecules is thought to depend on interaction with
protein targets. Because most of these interactions generally
occur at pockets or clefts in the three-dimensional structure

(60) Wang, S.; Ryder, H.; Pretswell, I.; Depledge, P.; Milton, J.;
Hancox, T. C.; Dale, I.; Dangerfield, W.; Charlton, P.; Faint, R.;
Dodd, R.; Hassan, S. Studies on quinazolinones as dual inhibitors
of Pgp and MRP1 in multidrug resistance.Bioorg. Med. Chem.
Lett. 2002, 12, 571-574.

Figure 10. Selected compounds containing the expanded
(A) S1:C1;S1 and (B) C:C1;H1;N1;N1 AACs (expanded
fragments in bold).
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of proteins, most bioactive structures are associated with
molecules whose size and shape can be accommodated by
these pockets or clefts. Yet, the usefulness of large substruc-
tural motifs for data mining efforts is limited by how
substructural motifs are defined in chemical space, and by
the number and diversity of compounds harboring those
motifs. As an alternative to “fingerprinting” approaches for
examining many molecular descriptors in parallel to assess
global similarities,19 AACs offer a simple, economical, all-
or-none measure of local similarity. Our results establish that
AACs contain relevant information about a compound’s
cytotoxicity profile.

In the case of AACs, because the minimum number of
compounds representing each AAC is large (>30), the
contribution of a particular AAC to the cell targeting
mechanism is predetermined to be statistically significant
from the outset. In this sense, AACs provide a highly reliable
marker with which to discover associations between chemical
structures and cytotoxicity profiles. Compared to other
substructure-based chemoinformatic analysis,5 our results
demonstrate that using a relatively small number of AACs
for the initial screen can aid in elucidation of larger structural
motifs involved in the molecule’s mechanism of action, once
the AACs are expanded. Although the starting number of
AACs (747) is far smaller than the number of substructures
employed in other analyses, fewer false positives are
expected with the AACs. However, it can be argued that
the AACs will miss some important substructures, and
therefore that the method is less sensitive than other methods.
To surmount this limitation, linked AACs (pairs, triplets, or
n-plets) could be used as starting points to identify structure-
activity relationships. For simplicity, the current analysis was
limited to individual AACs as starting points.

As a caveat, while the results demonstrate the usefulness
of this approach for studying the NCI anticancer database,
there are also limitations to the approach that could limit its
application to other databases; identifying associations
between AACs and bioactivity profiles is highly dependent
on the size and chemical diversity represented in the
collection of compounds being analyzed. First, the ability
to find an association depends on the degree of structural
diversity associated with the library, as determined by the
total number of AACs represented in the library. If diversity
is too limited, then most of the molecules in the library will
share a small number of AACs. If diversity is too broad,
then each AAC will be represented by too few molecules to
arrive at a statistically significant association. In addition,
identification of AACs determining the functional properties
of compounds also depends on the size of the library and
the number of AACs represented in each molecule. Finally,
the ability to identify association of AACs and bioactivity

profiles are dependent on the statistical variance observed
in the bioactivity profiles.

Nevertheless, used as a starting point for exploratory
analysis of complex structure-GI profile relationships in the
NCI database, AACs clearly offer an alternative approach
to more complex, substructure similarity-based searches. That
AACs serve as markers to identify larger structural motifs
associated with specific bioactivity profiles can be explained
for the same reasons that conserved amino acids in the active
sites of proteins are able to yield useful information about
the function of an entire protein. While the AAC alone may
not be sufficient for determining a specific type of activity,
if the AAC is embedded in a molecule and surrounded by
other favorable structural features, the AAC may become
the primary determinant of the functional feature of the entire
molecule. Consistently, the results demonstrate that if AACs
are found to be associated with specific toxicity profiles, it
is possible to expand the AAC into a larger substructural
template that is important for the toxicity property of the
AAC.

In conclusion, the ability to use AACs as a starting point
for elucidating structure-activity relationships in the NCI
data set should open another window for elucidating the
molecular mechanisms targeting the activity of anticancer
agents to certain types of cancer cells. On the basis of
similarities between the structure of the compounds and the
correlation between the activities of the compounds on
different cell lines with gene expression differences in those
cell lines, it has been possible to infer hypothetical relation-
ships between the structures of compounds and their cell
growth inhibitory activity. While experiments are already
underway to test these hypotheses, the ability to derive novel,
meaningful mechanistic hypotheses from these relationships
indicates that mining large, complex data sets should become
increasingly relevant for anticancer drug targeting efforts.
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