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Abstract: In pharmaceutical development, structure—activity relationship studies aim to identify
characteristics of chemical structures associated with well-defined activity end points. While
this goal-driven approach is ideally suited for lead development purposes, a more exploration-
driven approach is needed to discover cell type-selective drug targeting mechanisms in complex
data sets. Growth inhibition profiles across different cancer cell lines are potentially informative
with respect to molecular mechanisms targeting the activity of anticancer agents to specific
tumor cells, yet only a small number of mechanistic associations between chemical structure
and growth inhibition profiles have been discovered to date. Here, we have applied an exhaustive
statistical analysis strategy to more than 10 000 compounds in the NCI's anticancer agent
database to identify molecular substructures associated with specific cytotoxicity signatures
against a panel of human tumor-derived cancer cell lines (the Developmental Therapeutics
Program 60-cell line panel). Some of the most significant substructures conferring cell type-
selective cytotoxic activity include a large family of delocalized lipophilic cations; chloropurines,
chloropyrimidines, and thiazoles; organosulfur chelators and organometallic complexes; and
an unexpectedly related family of alkyl-lysophospholipids and phosphate prodrugs. Information
from cell-based assays and gene expression measurements have been related to substructures
represented in the chemical space covered by the library, yielding several candidate targeting
mechanisms.

Keywords: Chemoinformatics; structure—activity relationships; drug targeting; anticancer agents;
drug discovery

Introduction if compounds are screened in multiple assays, the most

The central problem in the analysis of structueetivity promising drug leads can be ranked and prioritized on the
relationships (SARs) is identifying characteristics of a com- Pasis ofa priori performance thresholds set for each assay.
pound’s chemical structure that are associated with a specific Growth inhibition (Gl) profiles capture the specific cyto-
biological property or functional activity. SAR studies in drug toxicity of a compound across a range of cell lines. Since
discovery focus on assays with well-defined end points, for the important information is contained in the entire profile
example, inhibition of enzymatic activity. In these assays, rather than in responses of individual cell lines, GI profiles
potent compounds equate with promising leads. Thus, evenare not easy to study using standard SAR approaches.
Nevertheless, Gl profiles can be quite informative for basic
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toxicity classed;*4% 1% some of these toxicity classes may

Understanding the mechanism through which an anticancer

be exploited to enhance the selective activity of anticancer agent selectively inhibits the growth of a particular cancer

agents against specific types of tumor cefd21618
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cell type can have practical applications in the development
of targeted anticancer agents. Indeed, mechanistic SAR
analyses of Gl profiles not only point to mechanisms through

which anticancer agents inhibit the growth of a particular

cell type but also could be used as a starting point to develop
“personalized” chemotherapeutic stratediebo discover
targeting mechanisms, one must start by identifying statisti-
cally significant associations between chemical structure and
growth inhibition of particular cell types. Since Gl profiles

vary in a space having dimensions equal to the number of

cell lines assayed (59 in our case), identifying statistically
significant Gl profiles is not a trivial amount of work.
Identifying significant associations between Gl profiles and
chemical structure is even more challenging.

Here we describe the results of an exhaustive search for
associations between Gl profiles and chemical structure for
more than 10 000 chemical structures in the NCI anticancer
agent database. The basic idea is to partition the compounds
into groups on the basis of whether small chemical structure

fragments called “augmented atom codes” (AACre

present in the molecule. Then for each AAC, we make a
statistical comparison of growth inhibition between com-
pounds containing the AAC and compounds lacking it, for
each cell line in the panel. The structure fragments yielding
a significant result for this comparison are then expanded
into larger fragments that determine a specific Gl profile.
Further checks are made to ensure that the fragment is not

just linked to some other fragment that is the mechanistic

actor. Finally, gene expression measurements performed on
the 60 cell lines can help infer biological mechanisms
underlying each chemical structurgrowth inhibition
associatiort?13-1620This method elucidates many chemical
structure-growth inhibition associations with a moderate to
high level of statistical significance. In this article, we present
the 15 discovered associations that are most significant.

Monga, M.; Sausville, E. A. Developmental therapeutics program

(14) Yamori, T. Panel of human cancer cell lines provides valuable
database for drug discovery and bioinformati€ancer Chemo-
ther. Pharmacol2003 52 (Suppl. 1), S74S79.

(15) Staunton, J. E.; Slonim, D. K.; Coller, H. A.; Tamayo, P.; Angelo,
M. J.; Park, J.; Scherf, U.; Lee, J. K.; Reinhold, W. O.; Weinstein,
J. N.; Mesirov, J. P.; Lander, E. S.; Golub, T. R. Chemosensitivity
prediction by transcriptional profilingProc. Natl. Acad. Sci.
U.S.A.2001, 98, 10787+10792.

(16) Wallgvist, A.; Rabow, A. A.; Shoemaker, R. H.; Sausville, E.
A.; Covell, D. G. Establishing connections between microarray
expression data and chemotherapeutic cancer pharmactlogy.
Cancer Ther2002 1, 311-320.

(17) Rabow, A. A.; Shoemaker, R. H.; Sausville, E. A.; Covell, D. G.
Mining the National Cancer Institute’s tumor-screening data-
base: identification of compounds with similar cellular activities.
J. Med. Chem2002 45, 818-840.

(18) Johnson, D. E.; Blower, P. E., Jr.; Myatt, G. J.; Wolfgang, G. H.
Chem-tox informatics: data mining using a medicinal chemistry
building block approactCurr. Opin. Drug Disceery Dev. 2001,

4, 92-101.

(19) Todeschini, RHandbook of molecular descriptqré/iley-VCH:

Weinheim, Germany, 2000; Vol. xxi, p 667.



Chemoinformatic Analysis of Anticancer Drug Targeting articles

Materials and Methods tures using the connection tables in the DTP database.

Data Source.The Developmental Therapeutics Program Specifically, we identified all possible chemical structure
(DTP) at the National Cancer Institute (NCI) has compiled fragments consisting of a central atom together with infor-
a database of roughly 41 000 small molecules that have als mation about the peripheral atoms to which the central atom

been screened for chemosensitivity on a reference set of > directly bonded (i.e., the element type of each atom and
human tumor-derived cell lines, commonly known as the

the order of each bond, without distinguishing aromatic,
“60-cell line panel”11421For each compound, the chemical nonaromatic, or partial bonding characteristics). These frag-
structure is available as a connection table specifying all ments are called augmente_d atom COdeS. (AMGE)d have
chemical bonds in the molecule. been used for many years in QSAR studies. For example, a
Growth inhibition (GI) measurements are available ag Gl

central nitrogen atom with single bonds to two carbon atoms
’ . and double bonds to one carbon atom is an AAC. This AAC

values, the concentration of a compound slowing growth at

48 h by 50% relative to the growth of untreated cells. We

is denoted N:C1;C1;C2, where the letter before the colon is
analyzed GJy values on the logscale, and only considered

the chemical symbol for the central atom and the letters
. X . following the colon are the chemical symbols of the atoms

Glsp values for 59 cell lines for which gene expression data g y

are available. These 59 cell lines are the usual NCI 60 cell

to which the central atom is bonded (each followed by a
lines except that breast cell line MDA-N has been omitted.

number indicating the number of bonds to the central atom).
Compounds that were missing43values for more than 10 Initial Screening of AACs. Candidate AACs with specific
of these 59 cell lines were dropped from the analysis.

effects onGlsg are identified by comparing the avera@éso
Compounds for which the standard deviation of the observedValues for compounds containing the AAC to the average
Glso values was less than 0.3 were also dropped, leaving

Glso of compounds lacking it for each cell line. If this ratio
10 589 compounds for further analysis. A standard deviation exceeds 2 or is less thah in at least one cell line, then the

of 0.3 corresponds roughly to requiring at least one-third of AAC is selected for further anaIyS|'s. Only AACs pr'esent in
the cells in a cell line to differ by more than 25% from the at least 30 compounds were considered for selection. In the
mean Gi, for the compound calculation of false positive rateside infra), if at least 30

L compounds are used to form the average, the probability of
Data Normalization. Glsp values were processed to b 9 P y

ffects due to either th toxicity of h obtaining a 2-fold change by chance in at least one of the
remove etiects due to ertner the average toxiCity of €ach gqg o) jines s less than 1 in 4GBince 130 AACs are present
compound or the average sensitivity of each cell line. We

. . in at least 30 compounds, it follows that the expected number
fit a linear model of the form Gb; = A + B; + R;, where P P

: . . of false positives is less than 0.01.
Glsgj is the experimental G4 value for compound i in cell Estimati f False Positive RatesThe fal ii
line j. TheA values correspond to differing average toxicities stimation of alse Fositive Rales./he Ialse posilive
across the compounds. For example, metal-containing com-ate s th? probability of finding an AAC for which atilelast
pounds tend to have lower Glvalues than compounds one cell line’s mearGlsy value for compounds containing

containing no metal. ThB; values correspond to the overall the AAC g'ffTrS kl_ay Z'tfr(])ld ZX? trk')e meadﬁlso vz;lue for T
sensitivity of each cell line across all compounds. For compounds “facking the » DY fandom chance. 10
example, leukemic cell lines tend to be more sensitive to calculate this false positive rate, we carried out a statistical

growth inhibitory agents overall, while renal cell lines tend gr:aly3||s of t(;]efR" gallées (thfe absolute vglugs of th(;a adj?fstetd d
to be more resistant. All subsequent analysis is carried out so values defined above) for compounds deemed unaffecte

on theR; values, which we will ternGlso values henceforth. by blolog:jcal varlailon "& :hethcell lines. T(;), |dtent|f)é;uch
A Glsg value of zero indicates that compound i has average compounds, we retumed to the raw (unadjusted) Gata

toxicity in cell line j, after correcting for overall compound aqd §electe§i the comlpounds for rf[?]mh q?@?lue? V}’i{g
toxicity and overall cell line sensitivity. Values &flso much missing, and no Gb values were at the ceiling level o

greater than zero indicate lower than expected toxicity, and EA These 2427tcotrnp(?unds_were| sor:ed :n ascendm?hordelrl
values of Glsp much less than zero indicate higher than y range (greatest value minus least value across the ce

expected toxicity. Missing values were filled in with zero. lines), and compounds with ZEro range were (_)mltted. Next,
. . . . we selected 250 compounds with a range in the second
Chemical Structure Descriptors.For analysis of chemi-

. . . quartile, for which variation is likely due to experimental
cal structure-activity relationships, the compounds were

tationally f ted int imol t of subst noise in the assay. After all 59 250 data points for these
computationally fragmented into a simpler set of substruc- compounds have been pooled together, the corresponding

adjustedR;|**#values closely follow an exponential distri-

(20) Wallgvist, A.; Rabow, A. A.; Shoemaker, R. H.; Sausville, E. bution with mean of 0.2 (data not shown). Thus, we can
A.; Covell, D. G. Linking the growth inhibition response from  simulate from the error distribution of th@&ls, assay by
the l\:atiolnal Cdancr(]er '”StiltUte;S anticanger Scrfee“ to ge;oeogxlofes'simulatinge from a standard exponential distribution, taking
sion levels and other molecular target d&ainformatics: 1/1.14 P _
10, 22122224, E_to be equal _t_o (oyti4 ar_1d then_multlplyng by —1

(21) Vekris, A.; Meynard, D.; Haaz, M. C.; Bayssas, M.; Bonnet, J.; Wltr: a pr_Oba?'“ty of 0;‘5' Using 150§|mulateq dgta ,Sets, of
Robert, J. Molecular determinants of the cytotoxicity of platinum 59 “cell lines” and 30 “compounds” from this distribution,
compounds: the contribution of in silico resear€ancer Res. we found that fewer than 1 in 1@f the simulated data sets
2004 64, 356-362. had at least one cell line with a2-fold change, and the
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expected number of false positives is therefore less thangene expression measurements for each of the three sets of
130 x 104 (~0.01). arrays. For some analyses, the six leukemic cell lines were
Discrimination of Extreme and Average Subsets of  excluded when correlations were formed. This reduces the
Compounds. For SAR analysis, a comparison was made nhumber of significant correlations by 75%, since there are
between the distribution of5ls, values for compounds many compounds in the database exhibiting leukemia-
containing a specific chemical substructure and the distribu- specific toxicity, and many genes are specifically expressed
tion of Glsg values for compounds lacking it. The comparison or repressed in leukemic cell lines. Genes arising from this
was based on kernel density estimates (Gaussian kernel wittielationship are unlikely to be related to the biological
a bandwidth of 1.06/n%5) prepared for each of the two sets response to a drug. A list of genes was prepared for each
of compounds. Individual compounds whadsé, falls at a association, where the genes are ranked according to the least
point in the Glso distribution where the density for com-  (in magnitude) of the correlation coefficients for each of the
pounds containing the AAC is at least 3 times greater than triplicate experiments (Table 1 of the Supporting Informa-
the density for compounds lacking the AAC are deemed to tion).
be “extreme”, while the remaining compounds are deemed
to be “average”. Substructure expansion analysis, describedResults
below, was then performed to determine if any structural |dentification of Relationships between AACs and
features beyond the AAC could be used to discriminate the Chemosensitivity Profiles. The DTP database contains a
extreme from the average compounds. diverse set of natural products and synthetic compounds that
SAR Analysis by Fragment Expansion.The fragment also have G}, data for our reference set of 59 cell lines. We
expansion algorithm proceeds in an iterative fashion, with a selected 10 589 compounds with low levels of missing data
given AAC as the initial fragment. At each step, all possible and moderate to high variation in the assay readout. In these
extensions of the fragment that can be obtained by adding acompounds, we identified 747 distinct AACs to use as
single “floating atom” are considered. To determine which starting points for studying the relationship between chemical
atom is added, each possible extension is evaluated in termsubstructures of compounds and their growth inhibitory
of its representation in the average versus extreme subsetsctivity. Figure 1A shows the number of compounds match-
of compounds. Specifically, &2 statistic is calculated ing each AAC, ranked according to the number of matches
comparing the frequency with which the expanded fragment for each AAC. From the initial set of 747 AACs, we selected
occurs in the two compound sets. If téstatistic exceeds  for further analysis 130 AACs (bold in Figure 1A) that were
10, if the proportion in the extreme compounds exceeds 0.6,present in at least 30 compounds.
and if this proportion is greater than the corresponding For each cell lineAAC pair, we then looked at the log
proportion in the average compounds, then the floating atomratios of the averag8ls, for compounds containing the AAC
is considered to be a “discriminating candidate” for the to the averageGlsg for compounds lacking it. Figure 1B
extension. Among all discriminating candidates, the one with summarizes these fold changes over the entire database; for
the highesty? statistic is added to the fragment. If no each AAC, the largest fold change (in magnitude) across
discriminating candidate is found, the floating atom with the the cell lines is selected, and these fold changes are plotted
greatest frequency in the extreme compounds is added, ass a function of rank. As discussed in Materials and Methods,
long as that frequency exceeds 0.8. This process is repeatedess than 0.01 AAC is expected to have a 2-fold change in
joining additional floating atoms to the fragment until a at least one cell line by chance. We found 15 AACs with
termination criterion is met. The process terminates if no fold change exceeding 2 in at least one cell line (bold in
atom can be added to the fragment, or if the average Figure 1B). This gives a false discovery rate of less than
agreement between the fragment and the extreme compoundg.01/15 £0.001), so overall, the 15 selected AACs are highly
drops below 75% of the fragment size. In this manner, each statistically significant; it is unlikely that even one of them
AAC with a significant effect on Gbis extended to a larger is a false positive.
fragment that is more highly specific to the distinctive pattern ~ These 15 selected AACs are represented in 1701 distinct
of growth inhibition associated with the AAC (see Table 2 compounds of 10 589 that were analyzed, so they are fairly
of the Supporting Information). common in the agents screened by the NCI. Several of the
Gene Expression DataMicroarray measurements of gene 15 AACs satisfy the 2-fold change condition for more than
expression in the 59-cell line panel are used to aid in inferring one cell line, so there are a total of 45 AACell line pairs
the biological and chemical mechanism underlying each in which AAC-specific effects o115, are seen. As a result
significant structure Gl associatiod?13-1620\We used the = of meeting the fold change condition, these are the most
triplicate array measurements obtained using Affymetrix likely AACs to be functionally significant in determining
U95A chips from Novartis. Arrays were scale-normalized cell type-specific growth inhibitory activity.
to have equal medians. For each AAQ@4s, profile (i.e., Applying a two-way clustering algorithm to th@ls, fold
the 59 log ratios between the avera@g, for compounds changes in the 15 AACs and the 59 cell lines reveals that
containing an AAC and the averag&lso for compounds certain sets of AACs lead to similar chemosensitivity profiles
lacking it), we calculated Pearson correlation coefficients (Figure 2). Specifically, there are several distinct clusters
between the values in th8ls, profile and log-transformed  that are formed by more than one agent that share similar
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Figure 1. Survey of AACs represented in the NCI anticancer agent database. (A) Plot of the number of compounds matching
each of the 747 AACs on the log scale, ranked by decreasing number of matches. The bold line covers 110 fragments contained
in at least 30 compounds that are used in the subsequent analysis. (B) Rank plot showing the log, fold changes between the
average Gls, for compounds containing a given AAC relative to the average Glsp for compounds lacking the AAC. The fold
change that is shown is the largest in magnitude over 59 cell lines. The bold line covers the 15 fragments that have a >2-fold
change in at least one cell line.
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Figure 2. Cluster analysis of cell lines and structure fragments. For each AAC—cell line pair, the log, Gls, ratio is calculated
between compounds containing the AAC and compounds lacking it. Results were clustered with respect to both AACs and cell
lines, and visualized as a heat map. Only the 15 AACs with a 2-fold change in at least on cell line are shown.

cell type-selective targeting activities. There are two possible AACs exhibit 27% overlap, and no other pair of AACs
explanations for the clusters. One explanation is that severalexhibits >12% overlap. Thus, with the exception of the
AACs may inhibit cell growth through a similar mechanism, O:H;P1 and P:01;01;01;02 AACs, and perhaps N:C1;H1;N1
even though the AACs are contained in distinct sets of and C:N1;S1;S2, observed associations between different
compounds. A more trivial explanation is that several AACs AACs are likely due to similarities in the biological response
may overlap to form a common substructure so that a single of the cells to distinct classes of compounds.
class of compounds is represented by several different AACs. Identification of Compounds with AAC-Specific Glsg

To address this issue, for each distinct pair among the 15Values. To understand more completely the natureGaf,
selected AACs, we calculated the number of compounds effects associated with particular AACs, for each of the 45
containing both AACs, divided by the total number of distinct AAC—cell line pairs, density plots were prepared showing
compounds containing either AAC. Table 1 shows the results the Glso distribution for compounds containing the AAC and
of this analysis. Two AACs (O:H;P1 and P:01;01;01;02) the Gls distribution for compounds lacking it (Figure 3).
exhibit 79% overlap. Evidently, these AACs overlap to form After visual inspection, many of these distributions had a
a phosphate group, and therefore occur in approximately thestrong multimodal character or were heavily skewed. This
same set of compounds. The N:C1;H1;N1 and C:N1;S1;S2 suggests that the observed 2-fold difference in the n@dan

VOL. 1, NO. 4 MOLECULAR PHARMACEUTICS 271



articles Shedden and Rosania

HS-578T_BREAST (N:C1:H1;N1;) CCRF-CEM_LEUK (C:N1;81;82)) COLO-205_COLON (C:N1;81;82;) HL-60(TB)_LEUK (C:N1;$1:82;)
T

\
[
|

!
[
;o
i
|

SR_LEUK (C:N1;81;82;} CCRF-CEM_LEUK (S:C1;81;)
T T T T T T

!
{

-10 -5 o] 5 10 -10 -5 o] 5 10 -10 -5 [¢] 5 10 -1 5 10
HCT-15_COLON (N:C1;C1;C2;) EKVX_NSCLC (C:H1:H1;H1;S1;) OVCAR-4_OVARY (C:H1;H1;H1;S1) HS-578T_BREAST (C:N1:N1;S2;)
T Iﬂl T T ‘lﬂ\ T T ;l\l T T ”"‘ T
I I I i
i i i i
H A i I\
’;' ) j \ I~ i~
1 R LA ZEENTN AN
-10 -5 o] 5 10 -10 -5 o] 5 10 -10 -5 [¢] 5 10 -10 -5 0 5 10
SNB-75_CNS (C:N1;N1:52;) OVCAR-4_OVARY (C:H1;H1;01;01;) EKVX_NSCLC (P:01;01:01;02;) HCC-2998 COLON (P:01;01:01:02
T T T T 7T T T T T T T T
! i i f
i P i I
i [ | i
\ \
\ A, 4 AN
Lo 4 S 1 Sl Lo ) SN
-10 -5 o] 5 10 -10 -5 0 5 10 -10 -5 [¢] 5 10 -10 -5 0 5 10
NCI-H460_NSCLC (O:H1;P1;) UACC-257_MELANOMA (O:H1;P1;)
T

T T T n T
\

! 7

i
[

10 5 10 10 -5 0 5 10
CAKI-1_RENAL (C:CI1:N1;N2;) CCRF-CEM_LEUK (C:CI1;N1;N2;) LOX-IMVI_MELAN (C:CI1:N1;N2;) CAKI-1_RENAL (C:C1;CI1;N2;)
T "‘\‘l T T |"1Y‘ T T :"\‘I T T "‘\y‘ T
i !
N A A R
\ / Ll
N\ 7N A
A / A ) /
T 1 S TN N EA L
-10 -5 o] 5 10 -10 -5 o] 5 10 -10 -5 o] 5 10 -10 -5 0 5 10
K-562_LEUK (C:C1;CI1;N2;) NCI-H460_NSCLC (O:C1;81;) HOP-92_NSCLC (C:C1;H1;N1:N1;) /ADA-MB-435_BREAST (C:C1;H1:N1;N
T |[" T T T T T I T T T
i \

|
1
1

—

|
I

)
i
i
L

]
!
I
!
!
i
]
i
N !
I

i

\
3
1
'

L
v
BN
.
/
I
e
\\>
\
7

1
-

Figure 3. Glsp densities for each cell line—AAC pair for which a 2-fold difference exists in the Glsp values between compounds
containing the AAC (—) and compounds lacking it (- - -). Note that most density plots are multimodal or highly skewed.

is not uniquely determined by the AAC, since many of the ways by the structure and physicochemical properties of the
compounds containing the AAC have averdgjig, values. entire molecule, and not just by any individual AAC.
This result is consistent with the fact that the activity of a Nevertheless, the skewness and multimodal nature @lthe
molecule in a particular cell line is affected in many complex distribution indicate that a substantial minority of compounds
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Table 1. Co-Occurrence of AACs in Individual Molecules, A ICI; ICI;
Expressed as a Percentage of Molecules Showing the Two E
Indicated AACs? C S:j() C.gC_O c=s %2 032
100 18 100 18
C:NL;S1;82 | 1
S:Cl;81 | 0 8
N:CL;C15Cc2 ) 1 0 0
CHL;HL;HL; 81| 1 2 1 4
C:NI;N1;82 (27 2 2 0 0
CHLHLO0L;01 3 1 0 2 0 0 c—-S ——> C—-S—-C —> Cc—S—C—C
P:01;03;,01;,02 | 0 0 0 1 0 0 1 40 184 36 119 35 64
O:H1;P1 0 0 0 1.0 0 0 79 407 184 407 184 407 184
CCI,NEN2 | 0 0 0 0O 0 0 0 4 4
C:CL,OLN2 1 0 1 0 2 0 0 0 0 12 B
C-Cl-H(l)-:I\?llfl\SIi g g (1) g g 3 8 8 8 g 8 0 AAC Extreme Structure Average Structure
CN2S;;81, 0 0 012 0 0 0 O 0 O O 0 O H C H
NCLNI| 0 3 0 0 1 7 0 0 0 1 0 0 0 O C:H;H;H;S it oo H—t—s=0
@ SE) 2 [ |
- P > O o @ = A H
z g CERS 4 = z @ 5
T2 85225348 288% @ C:NLN1:S2 Nt CmN—tmn—c
Oz B8 0O 2E QT O Q0 R
Z O n 2 O 0 0 A& 0 0T o0 T 0 c o]
T Wb
2 The overlap is greatest between O:H1;P1 and P:01;01;01;02 C:II;01:01 o—é—o—y:—c—c—c o—é—o—g—c—c—c
(phosphates) AACs, followed by C:N1;N1;S2 and N:C1;H1;N1 AACs I o B . N
(carbothioamides). H | H i
C:N1;51;52 ? c ? ‘|3
containing each AAC exhibits extreme toxicity or resistance §=C—N-C—C SZC‘N‘CC‘C
against one or more cell lines. o I
istinauish th ith | C:CIEN N2 N N
To dlstlngw§ the compounds with extremesQtalues CC=C—N=G_C| C=C—N=t—q]
from those with average &l values based on the &l c
densities, we partitioned the compounds containing each Lo c
structure fragment into two subsets. As the extremg, Gl C-OLENLNL + # +
group, we selected compounds whosey@alues fall into a T O=C—N—¢~C~C=C—C O—N—C—c—C
region of the GJo distribution where the density for H H
compounds containing the fragment is at least 3 times greater N:C1;N1 C—C=N—-N—C—N—C C—C=N—-N—C—N—C
than the density for compounds lacking the fragment. All ) My H
other compounds containing the fragment are in the average N:CLHN C=C=N-N=C—=N—-C CN‘N‘C‘CC
Glso group. This partition can be made separately for each 0181 o85G S SN SN

cell line with a 2-fold effect. For AACs with more than one c s
cell line meeting the 2-fold threshold, we found a high degree x:c1;c1:c2 G—N=c—c=c—c c—N=b—c=c—c
of similarity in the extreme compounds across the cell lines.

Therefore, we pooled all compounds that were extreme in P:O1:01:01:02 o=i)—o o=§>>—o
at least one cell line into the extreme group, and the 5 5
remaining compounds were placed into the average group. N N
This gives a single partition of the compounds containing ¢.c1.c11:N2 oL oL g

each AAC.
. . Figure 4. Results of the fragment expansion algorithm. (A)
The fragment expansion algorithm was then used to Partial results obtained during the stepwise expansion of the

e?(pand eacfh_ AAC into two larger fragments: one that was S:H1;H1;H1;C1 AAC. Fractions indicate the representation of
hlghly_ specific tq_the averag8lso compounds and one that the fragment in the extreme vs average group of compounds.

was highly specific to the extrent®lso compounds. lllustrat-  Ag the fragment is expanded, greater discrimination between

ing the expansion algorithm result for the C:H1;H1;H1;S1 the two groups of compounds is achieved. (B) Expanded

AAC clearly demonstrates how this statistical technique structures for the most significant extreme vs average Glso
identifies large molecular fragments that are responsible for AaCs, together with the cell lines for which a =2-fold change
differential cytotoxicity, starting from an AAC core (Figure in the GIsp value is found in association with the AAC.

4A). By the fourth step of the expansion, the substructure

matches 30 of 40 of the extren@s, compounds, but only Structure —Activity Relationship Analysis. After frag-
matches 13 of 184 of the avera@és, compounds. Applied  ment expansion analysis, we proceeded to analyze SARs
to the 15 AACs selected in the initial screen, the fragment between the subset of compounds possessing the expanded
expansion algorithm is able to identify larger substructural template incorporating the AAC and the particular observed
motifs that are associated with differential cytotoxicity cytotoxicity profiles. Additional insights relevant to the
profiles in several of the compounds (Figure 4B and Table mechanism of action of the compounds could be obtained
2 of the Supporting Information). by (1) analyzing the scientific literature in terms of the
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NH, dequaliniund®3132 (NSC 166454). Ethidium bromide and
N dequalinium are toxic to mitochondria as they specifically
] P induce mitochondrial DNA depletiof#:26-30F163334a close
N+ styryl analogue of NSC 4239, also accumulates in mito-
(CHz)‘m 2cr chondria and induces apoptosis by perturbing respiratory
Nl+ function.
‘ N To gain additional insights into the toxicity signature of
_~ these compounds, we analyzed the genes that were over- or
NH, underexpressed in cell lines that were sensitive and resist_ant
NSC 4239 NSC 268986 NSC 166454 to_these compounds. We f_ound that compounds cpntammg
this arrangement are relatively more toxic to cell lines SF-
Figure 5. Selected compounds containing the expanded 268, SN-12C, and SNB-19 and relatively less toxic to cell
N;C1;C1;C2 AAC (expanded fragments in bold). lines HCT-15, ADR-RES, and SF-268 (Figure 3). Upon

examination of gene expression data for all cell lines, the
N:C1;C1;,C2Gls profile is more correlated with the levels
of the ABCB1 (also known as MDR1 or P-glycoprotein)
gene than any other gene (Table 1 of the Supporting

reported mechanism of action of compounds possessing th
expanded AAC, (2) inspecting the structures of the com-
pounds possessing the expanded AAC for global patterns

relating the structure and function of the compounds, and Information). For the three copies of ABCBL in three

ES) fmﬂllr.]g getﬂef with a Tgh or_t!ow level _OI eﬁre53|;)n 'T transcriptional profiling experiments, the nine correlations
€ cell lines that aré most Sensitive or resistant o MOIeCUIeS 1y yara a5 follows: 0.57, 0.62, 0.64, 0.54, 0.58, 0.56, 0.49,

containing a particular substructure. Because transcriptional
profiling data are available and some of the molecules in
the library have been previously studied in the scientific

literature, candidate mechanisms of action for many of the
structure fragments identified by our method can be pro-
posed. In the subsections that follow, each expanded AAC
identified in this study is analyzed in terms of how its specific (26) Seidel-Rogol, B. L.; Shadel, G. S. Modulation of mitochondrial
cytotoxicity profile is associated with differential gene transcription in response to mtDNA depletion and repletion in
expression of the cell line that was tested, and how the __HeLa cells.Nucleic Acids Res2002 30, 1929-1934.

. (27) Miller, S. W.; Trimmer, P. A.; Parker, W. D., Jr.; Davis, R. E.
chemical structure of the expanded AAC (or the lack of Creation and characterization of mitochondrial DNA-depleted cell

0.51, and 0.56. In addition, th&lso profile is strongly
correlated = 0.62) with independent reports of MDR-1
(ABCB1) protein expression dafaand with the rates of
rhodamine efflux® These results suggest that, while these

ability t? gxpand the AAC) SuggeSts canQidate mechanisms lines with “neuronal-like” properties]. Neurochem1996 67,

determining the selective activity of anticancer agents (or 1897-1907.

lack thereof) against specific cancer cell lines. (28) Herzberg, N. H.; Middelkoop, E.; Adorf, M.; Dekker, H. L.; Van
(1) Delocalized Imminium Cations. The N:C1;C1;C2 Galen, M. J.; Van den Berg, M.; Bolhuis, P. A.; Van den Bogert,

(imminium) AAC is generally embedded in a larger aromatic, C. Mitochondria in cultured human muscle cells depleted of

mitochondrial DNA.Eur. J. Cell Biol.1993 61, 400-408.
é29) Hayashi, J.; Takemitsu, M.; Goto, Y.; Nonaka, |. Human mito-
chondria and mitochondrial genome function as a single dynamic

conjugated structure (Figure 5). Because of the highly
conjugated character of these molecules, the positive charg

is delocalized. Delocalized lipophilic cations are known to cellular unit.J. Cell Biol. 1994 125, 43-50.

accumulate in mitochondria, as a result of the electrochemical(30) Hayakawa, T.; Noda, M.; Yasuda, K.; Yorifuji, H.; Taniguchi,
potential across the mitochondrial membrane of actively S.; Miwa, I.; Sakura, H.; Terauchi, Y.; Hayashi, J.; Sharp, G. W.;
respiring cell$223 At least three of the compounds sharing Kanazawa, Y.; Akanuma, Y.; Yazaki, Y.; Kadowaki, T. Ethidium

the AAC have been previously demonstrated to accumulate bromide-induced inhibition of mitochondrial gene transcription
in mitochondria (Figure 5): the styryl compound AMPANVE suppresses glucose-stimulated insulin release in the mouse

(NSC 4239) ethidium bromidé 20 (NSC 268986) and pancreatigs-cell line SHC9. J. Biol. Chem.1998 273 203006~
! ! 20307.

(31) Weiss, M. J.; Wong, J. R.; Ha, C. S.; Bleday, R.; Salem, R. R,;
(22) Rosania, G. R. Supertargeted chemistry: identifying relationships Steele, G. D., Jr.; Chen, L. B. Dequalinium, a topical antimicrobial

between molecular structures and their sub-cellular distribution. agent, displays anticarcinoma activity based on selective mito-
Curr. Top. Med. Chen2003 3, 659-685. chondrial accumulatiorProc. Natl. Acad. Sci. U.S.A987, 84,
(23) Modica-Napolitano, J. S.; Aprille, J. R. Delocalized lipophilic 5444-5448.
cations selectively target the mitochondria of carcinoma cidls. (32) Gamboa-Vujicic, G.; Emma, D. A,; Liao, S. Y.; Fuchtner, C;
Drug Delivery Re.. 2001, 49, 63—70. Manetta, A. Toxicity of the mitochondrial poison dequalinium
(24) Shedden, K.; Brumer, J.; Chang, Y. T.; Rosania, G. R. Chemo- chloride in a murine model systed.Pharm. Sci1993 82, 231—
informatic analysis of a supertargeted combinatorial library of 235.
styryl moleculesJ. Chem. Inf. Comput. Sc2003 43, 2068 (33) Fantin, V. R.; Leder, P. F16, a mitochondriotoxic compound,
2080. triggers apoptosis or necrosis depending on the genetic background
(25) Rosania, G. R.; Lee, J. W.; Ding, L.; Yoon, H. S.; Chang, Y. T. of the target carcinoma celCancer Res2004 64, 329-336.
Combinatorial approach to organelle-targeted fluorescent library (34) Fantin, V. R.; Berardi, M. J.; Scorrano, L.; Korsmeyer, S. J.; Leder,
based on the styryl scaffold. Am. Chem. So2003 125, 1130~ P. A novel mitochondriotoxic small molecule that selectively
1131. inhibits tumor cell growthCancer Cell2002 2, 29—-42.

274 MOLECULAR PHARMACEUTICS VOL. 1, NO. 4



Chemoinformatic Analysis of Anticancer Drug Targeting articles

compounds may be accumulating in the mitochondria of A
actively respiring cells, the ABCB1 multidrug resistance o}
mechanism may be countering mitochondrial accumulation 0=$—

and toxicity. 0 6 6
That lipophilic cations such as ethidium bromide, dequal- 1 /r I I

inium, and styryl compound 4M2M are substrates for N

P-glycoprotein is a testable hypothesis. Several molecules

possessing delocalized imminium cations have been noted

in the literature as good substrates for P-glycoprotein- o

7 NS
. . ) . N
mediated multidrug resistance, suggesting that ABCB1 may X
oo . . NSC 268965 N
be a general detoxification mechanism for this class of
compounds. For example, various rhodamifiés and the |
cyanine dye JC® are routinely used for mitochondrial B o
labeling of living cells, yet they also are also substrates for NSC 72151 g
=
s\é N
Br

P-glycoprotein. \i—
Interestingly, the substructure expansion algorithm did not g NSC 281817

identify an extension of the N:C1;C1;C2 AAC that was

specific to the extremélsy group of compounds, which o=b

indicates that there may be other toxicity mechanisms 6

associated with the toxicity of N:C1;C1;C2, perhaps inde- N

pendent of mitochondrial accumulation. For example, NSC

4238, a closely related isomer of NSC4239, accumulates in

other parts of the cett?>and is represented in the average

Glso group. However, there was a significant extension of

the AAC that was specific to avera@iso, compounds. We

found that the C2 atom in the fragment has a single bond to

sulfur in 40-50% of compounds with averaggiso values,

while for compounds containing extrer@dso values, at most

6% had a C2S link. This suggests that incorporating a NSC 324368 NSC 610458 NSC 81206

single sulfur atom into compounds containing N:C1;C1;C2

may substantially inhibit their ability to bind P-glycoprotein,

potentially reducing the susceptibility of N:C1;C1;C2-

containing compounds to P-glycoprotein-mediated drug

efflux. nisms, as phosphate prodrugs are presumably active only
(2) Alkyl-Lysophospholipid Analogues. Two of the  after phosphate hydrolysisyhile the alkyl-lysophospholipids
AACs (0:C1;S1 and P:01;01;01;02) correspond to sul- are active without hydrolysi#® 4! The sulfonates (NSC
fonates (Figure 6A) and phosphates (Figure 6B), respectively,268965, 72151, and 281817; Figure 6A) are somewhat
and have relatively similaGlso profiles (Figure 2). In the  similar to each other and structurally resemble the alkyl-
phosphate subset of compounds, there are at least two distinclysophospholipid compounds because of their polar meth-
structural subclasses: phosphate prodrugs [both nucleotideginesulfonate headgroup and long hydrophobic tail.
(NSC 81206; Figure 6B) and non-nucleotides (NSC 610458;  arguably, alkyl-lysophospholipid analogues are the main
Figure 6B)] and alkyl-lysophospholipids (NSC 324368; determinant of the cytotoxicity profile for this entire group
Figure 6B). These two classes of compounds are expectethf compounds, for three reasons. First, the 13 alkyl-
to have highly distinct cell type-specific targeting mecha- |ysophospholipids (or related analogues) exhibit more ex-

=0-

0

(o]

HO OH

Figure 6. Selected compounds containing the expanded (A)
0:C1;S1 and (B) P:01;01;01;02 and O:H1;P1 AACs (ex-
panded fragments in bold).

(35) Lee, J. S.; Paull, K.; Alvarez, M.; Hose, C.; Monks, A.; Grever, (39) Van Der Luit, A. H.; Budde, M.; Verheij, M.; Van Blitterswijk,

M.; Fojo, A. T.; Bates, S. E. Rhodamine efflux patterns predict W. J. Different modes of internalization of apoptotic alkyl-
P-glycoprotein substrates in the National Cancer Institute drug lysophospholipid and cell-rescuing lysophosphatidylcholBie-
screenMol. Pharmacol.1994 46, 627—638. chem. J.22003 374, 747—753.

(36) Saengkhae, C.; Loetchutinat, C.; Garnier-Suillerot, A. Kinetic (40) van der Luit, A. H.; Budde, M.; Ruurs, P.; Verheij, M.; van
analysis of rhodamines efflux mediated by the multidrug resistance Blitterswijk, W. J. Alkyl-lysophospholipid accumulates in lipid
protein (MRP1) Biophys. J.2003 85, 2006-2014. rafts and induces apoptosis via raft-dependent endocytosis and

(37) Loetchutinat, C.; Saengkhae, C.; Marbeuf-Gueye, C.; Garnier- inhibition of phosphatidylcholine synthesik.Biol. Chem2002
Suillerot, A. New insights into the P-glycoprotein-mediated 277, 39541-39547.
effluxes of rhodamineszur. J. Biochem2003 270, 476-485. (41) Bergmann, J.; Junghahn, |.; Brachwitz, H.; Langen, P. Multiple

(38) Kuhnel, J. M.; Perrot, J. Y.; Faussat, A. M.; Marie, J. P.; Schwaller, effects of antitumor alkyl-lysophospholipid analogs on the cyto-
M. A. Functional assay of multidrug resistant cells using JC-1, a solic free C&" concentration in a normal and a breast cancer cell
carbocyanine fluorescent prolieeukemial 997, 11, 1147-1155. line. Anticancer Res1994 14, 1549-1556.
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tremeGlsp values, having a median absolute value (across A

compounds and cell lines) of 1.28 compared to 0.62 for the Nz o o

other 39 compounds possessing the phosphate AAC. Second, N4K/|:N\ \\S/<N s NN

if we calculate the G, profile based on the alkyl-lysophos- k\ | N>_C' ©I J\ Q | /)\
pholipid analogues and compare it to the profile obtained o Vo e N" Sai N NT el
using all 52 compounds containing the AAC, the resulting _Iﬁ J NZ

profiles have a strong correlation of 0.87 even though the 4 ~o OH
alkyl-lysophospholipids are a minority of the 52 compounds. NSC 614491 NSC 373854 NSC 699704
Third, if we consider the correlations between individual non- _N_
alkyl-lysophospholipids and the alkyl-lysophospholipid- B N’/\ \>
derived Gk, profile, the mean absolute correlation is only
0.17, and only 8 of 39 compounds have a correlation greater f\ o o o NH,
than 0.3. Taken together, this indicates that the phosphate ¢ N
PN
Cl N Cl

and/or sulfonateGlsg profile is primarily determined by a

0. cl N NT Cl
cell type-specific cytotoxic activity of alkyl-lysophospholipid- \Q\
like molecules and not by the cell type-specific targeting of

phosphate and/or sulfonate prodrugs. NSC 58573 NSC 685829 NSC 680510
Interestingly, among the compounds that were clearly

different from alkyl-lysophospholipid, several displayed a C BN

relatively high correlation with the mean alkyl-lysophos- R \ 0 N\N/i\@

pholipid Glso levels. These included nucleoside phosphates / j*\\ /N\//N\//S—QSJQN

such as NSC 670654 (not shown= 0.72) and phosphate §T s o

prodrugs such as NSC 610458 (Figure 6B; camptothecin NSC 657718 o NSC 699666

phosphater, = 0.57). Camptothecin was present in the data- \ 0 N 0

base in both phosphorylated and dephosphorylated forms. /N\/N\/g\// s N

Unexpectedly, th&lsy values for camptothecin phosphate Jd Z “ 629668 °

showed higher correlation with the alkyl-lysophospholipid
signature = 0.57) than with dephosphorylated campto- Figure 7. Selected compounds containing the expanded (A)
thecin ¢ = 0.32, 0.41, and 0.47 in three replications). This C:C1,CI1;N2, (B) C:CIL;N1;N2, and (C) C:N2;S1;S1 AACs
suggests that the cell type-specific targeting mechanism of (expanded fragments in bold).

camptothecin phosphate may be related to its similarity t0 514491 (Figure 7A) and NSC 685829 (Figure 7B)], or
alkyl-lysophospholipids, rather than to its similarity t0 tnjazolo/thiazolium [INSC 657718, 699666, and 699668
camptothecin. Thu's,'camptothecin phosphate behaves as a(Figure 7C)] substructures. These compounds exhibit similar
alkyl-lysophospholipid analogue. patterns of resistance and sensitivity across the cell lines
The potential mechanistic sim_ilz_irity_ b_etween phosphate (Figure 2), and are particularly active against the CAKI-1
prodrugs and alkyl-lysophospholipids is important, because rena| cell line (Figure 3), a cell line that tends to be relatively
alkyl-lysophospholipids behave as surfactéhend affect  resjstant to many other anticancer agents. While chlorinated
the cell surface receptor-mediated intracellular signaling pyrimidines and purines are clearly related to each other,

mechanisnt“* Interestingly, TNFR (tumor necrosis factor  ineir relationship with thiazolo/thiazolium compounds is less
receptor) and PKIA (inhibitor subunit of protein kinase A) pvious.

were among the 10 genes having strongest correlation with Analysis of gene expression data in relation to the
the P:01;01,01,0%l5, profile (r = —0.58,—-0.40, and  cytotoxicity profiles of these compounds reveals that cell
—0.54 for TNFR andr = —0.46, —0.44, and—0.47 for  yne.specific uptake and transport of nucleobase or nucleo-
PKIA, in triplicate experiments). Both TNFR and PKIA are  gjge analoguéé“6 may constitute their primary targeting
components of important mediators of intracellular signal echanism. There are two transporter genes that are par-

transduction pathways. ticularly suggestive in this regard: the SLC29A1 gene
(3) Nucleobase and Nucleoside AnalogueBhree of the  gyerexpressed in sensitive cell lines —0.43,—0.41, and
AACs, C:C1;CI1;N2, C:CI1;N1;N2, and C:N2;S1;S1, are
embedded in a chloropyrimidine [NSC 373854 and 699704
(Figure 7A) and NSC 58573 (Figure 7B)], chloropurine [NSC

(44) Mangravite, L. M.; Badagnani, I.; Giacomini, K. M. Nucleoside
transporters in the disposition and targeting of nucleoside analogs
in the kidney.Eur. J. Pharmacol2003 479 269-281.

(42) stafford, R. E.; Fanni, T.; Dennis, E. A. Interfacial properties and (45) Lu, X.; Gong, S.; Monks, A.; Zaharevitz, D.; Moscow, J. A.

critical micelle concentration of lysophospholipidochemistry Correlation of nucleoside and nucleobase transporter gene expres-
1989 28, 5113-5120. sion with antimetabolite drug cytotoxicityl. Exp. Ther. Oncol.

(43) Yan,J.J.;Jdung, J. S.; Lee, J. E.; Lee, J.; Huh, S. O.; Kim, H. S; 2002 2, 200-212.
Jung, K. C.; Cho, J. Y.; Nam, J. S.; Suh, H. W.; Kim, Y. H.;  (46) Baldwin, S. A,; Beal, P. R.; Yao, S. Y.; King, A. E,; Cass, C. E.;
Song, D. K. Therapeutic effects of lysophosphatidylcholine in Young, J. D. The equilibrative nucleoside transporter family,
experimental sepsidat. Med.2004 10, 161—-167. SLC29.Pfluegers Arch2004 447, 735-743.
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—0.51 for correlations with C:CI1;N1;N2 in triplicate experi- A

ments;r = —0.43,—0.41, and—0.51 for correlations with

C:C1;CI1;N2 in triplicate experiments) and the ABCB6 gene

overexpressed in resistant cell lines<0.55, 0.43, and 0.50 ?L/\/Lmz % |

for correlations with C:C1;CI1,N2 in triplicate experiments; H H H H

r = 0.48, 0.39, and 0.47 for correlations with C:CI1;N1;N2 NSC 95678 NSC 319725 NSC 667870

@)

in triplicate experiments). For thiazoles, the SLC29A2 gene,
a close relative of SLC29A1, is associated with sensitivity
(Table 1 of the Supporting Information).

The mitochondrial localization and transport function of
both SLC29 and ABCB6 genes also suggest a mitochondrial
toxicity mechanism. The SLC29 genes are a family of NSC 635451 NSC 641297 NSC 654376
nucleoside and nucleobase transporters, with a high level of
expression in the kidne{f.SLC29A1, also known as hENT1, @
is an equilibrative, nucleoside membrane transporter respon- —
sible for the disposition of nucleoside analogues in the H O T <
urine446 SLC29A2 is a closely related nucleobase trans- >|_® H O
porter#® Recently, localization of hENT1 to mitochondria O
suggests that it may also be a mitochondrial nucleotide NSC 630128 NSC 625542 NSC 638257
exchanger involved in the transport of nucleosides across
the mitochondrial membrarfé. In this regard, hENT1
expression has been associated with the toxicity of a variety 53:
of antiviral and anticancer nucleosidég>4’Less is known < > @ \i, !
about the function of the ABCB6 gene, although it is a O—{%@—'O
mitochondrial membrane protein homologous to other trans-
membrane transportet$?® and its mutation has been im- NSC 647062 NSC 625493 NSC 625501
plicated in disorders of mitochondrial iron homeostas.is. Figure 8. Selected compounds containing the expanded (A)

(4) Organosulfur Compounds and Organometallic  N:C1;H1;N1 and C:N1;N1;S2, (B) N:C1;N1 and C:N1;N1;S2,
Complexes. The expanded template structures of four (cyN:c1:N1,and (D) C:N1;S1:S2 AACs (expanded fragments
different AACs belong to a family of metal chelators and i pold).
organometallic complexes. These AACs are C:N1;N1;S2
[thiosemicarbazones and hydrazinecarbothioamides (Figuregenes such as collagens and other cytoskeletal constituents
8A,B)], N:C1;N1 (Figure 8B,C), N:C1;H1;N1 (Figure 8A), are associated with the toxicity profile of this class of
and C:N1;S1;S2 [carbodithioates (Figure 8D)]. These metal compounds (Table 1 of the Supporting Information). Thus,
complexes possess above average growth inhibitory activitywhile these associations may be mechanistically significant
against all leukemic cell lines, as well as against several solidto some extent, it is likely that many of them are indirectly
tumor cell lines (Figures 2 and 3). Deducing drug sensitivity associated with toxicity. Consequently, they are considered
or resistance mechanisms from gene expression values isininformative with respect to the mechanism of action of
challenging in this case. Because of tissue-specific differencesthe drug.
in gene expression, the toxicity and resistance of any agent Therefore, instead of relying on gene expression data to
that is active against a particular tissue type (e.g., leukemicanalyze the targeting mechanism of the cluster, we could
cells) will correlate with every gene that is relatively over- gain insights directly from structureactivity relationships
or underexpressed in that tissue type. Since leukemic cellsobserved in this subset of compounds. Expanded templates
generally grow in suspension, they do not form an extracel- of the C:N1;N1;S2 AAC overlap with N:C1:N1 and
lular matrix and fail to express cytoskeletal genes involved N:C1;H1;N AACs (Table 1), forming the tridentate N*
in cell spreading and adhesion. For this reason, numerousN*—S* metal binding carbothioamide mo#t:5* The un-

complexed N*N*—S* thiosemicarbazones [NSC 95678,
319725, and 667870 (Figure 8A)] tend to be 1 or 2 orders

(47) Lai, Y.; Tse, C. M.; Unadkat, J. D. Mitochondrial expression of
the human equilibrative nucleoside transporter 1 (hENT1) results

in enhanced mitochondrial toxicity of antiviral drugs. Biol. (50) Nocentini, G.; Federici, F.; Armellini, R.; Franchetti, P.; Barzi,
Chem.2004 279, 4490-4497. A. Isolation of two cellular lines resistant to ribonucleotide
(48) Mitsuhashi, N.; Miki, T.; Senbongi, H.; Yokoi, N.; Yano, H.; reductase inhibitors to investigate the inhibitory activity of'2,2
Miyazaki, M.; Nakajima, N.; lwanaga, T.; Yokoyama, Y.; Shibata, bipyridyl-6-carbothioamideAnticancer Drugsl99Q 1, 171-177.
T.; Seino, S. MTABC3, a novel mitochondrial ATP-binding  (51) Nocentini, G.; Barzi, A. The 2,bipyridyl-6-carbothioamide
cassette protein involved in iron homeostasigiol. Chem200Q copper(ll) complex differs from the iron(ll) complex in its
275 17536-17540. biochemical effects in tumor cells, suggesting possible differences
(49) Lill, R.; Kispal, G. Mitochondrial ABC transporterRes. Micro- in the mechanism leading to cytotoxicitBiochem. Pharmacol.
biol. 2001, 152, 331—-340. 1996 52, 65-71.
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of magnitude less toxic than the complexed N\R* —S* A o Ho e
carbothioamides [NSC 635451, 641297, and 654376 (Figure b SN j\( \0 o_
8B and data not shown)], indicating that the toxicity of these Q o OH O
compounds is most likely mediated through the bound metal. s . NANJ\(O
Nevertheless, metal binding itself is not the primary deter- 7N _2:( OH y
minant of the cell type-specific targeting mechanism, as S A \ Wa e O

[0}

uncomplexed carbothioamides (Figure 8A) possess cytotox-
icity profiles similar to those of metal complexes (Figure
8B and data not shown).

NSC 186301 NSC 111702 NSC 650773

Since N:C1;N1 AAC represents the most structurally B ¢ o o~ 0
diverse of all organometallic complexes and is often part of A (l) 0—
molecules that do not contain sulfur atoms [NSC 630128 O O
and 625542 (Figure 8C)], it appears that the sulfur atom may © o
not be an essential component for the targeting mechanism 0 <° O
of this cluster of compounds. The N:C1;N1 AAC forms a <0 O‘ ° % o
complex with a variety of metals [for example, Ru (NSC /
630128), Ni (NSC 625542), and Cu (NSC 638287); Figure NSC 211488 NSC 403148 NSC 350102

8C], in a variety of different binding modes. Some of o
the N:C1;N1 AAC-containing compounds are the tridentate F/9ure 9. Selected compounds containing the expanded (A)
N*—N*—S* carbothioamides in metal-bound form [NSC CH1LHLHLSI and (B) C:H1:H1,01;,01 AACs (expanded

635451, 641297, and 654376 (Figure 8B)], overlapping with 2gments in bold).

E?Oer ggrln;Nkl;SﬁsACAgéo?tzh;r:nzrzz'gSi;'"("'fis S:etgec':r)]";’::j compounds [for example, NSC 186301, 111702, and 650773
pie, 9 (Figure 9A)], the C:H1;H1;H1;S1 AAC is often attached to

bear little resemblance to the other metal chelators that havea ficid. planar scaffold. A di- or trimethoxy- or hvdroxy-
been identified. Thus, the targeted activity of many organo- gic. p ' Y Y y

. . henyl group is generally found at the opposite end of this
sulfur compounds appears to be associated with a genera - ) .
. ; . structure. Similarly, in the case of 1,3-dioxo compounds, a
activation or resistance response to organometallic com-

plexes, and not very specific to a particular type of complex. rigid, heterocyclicaromatic system bridgesthe C:H1;H1;01;01

: . ) . O AAC to a mono-, di-, or trimethoxyphenyl group [for
Consistent with this observation, the C:NL;S1,S2 AAC o 010 “NSC 211488, 403148, and 350102 (Figure 9B)].

[carbod|th|ogtes (Flgure.8D)] |d¢nt|f|es a relgteq type of Compounds containing either of these AACs are active
nlllestétl'gﬁlgggg 6aZg5e4n§;[3W|th da 6u2n5|>gltj)i nllgtal blgglng Vr\?ﬁ?e against a broad variety of cell lines from different tissues
[ f th ’C'Nl'Sl"S;n d( |bgu(rjet - al e (Figure 2), yet tend to be less active against TK-10 (renal),
some ot Ihe .-~,52,52 compounds bind 10 MEla's as 4y,caAr 4 and OVCAR-5 (ovarian), EKVX (non-small cell
monomers [NSC 625493 (Figure 8D)], others do so as dlmersIung cancer), T-47D (breast), and UACC257 (melanoma)
and trimers [NSC 625501 and 647062 (Figure 8D)]. Most cells (Figuresl, 2 and 3) '
Lmogqorltsgélg, fr:nlﬁgn:fs( Zarl:iaor:/\lggaloggrofc;Lgeag(')l(lnlégll'lgz Analysis of the scientific literature revealed that the
AACp revea’IIs t%at antirr?on (Sb) cgm lexes aré a{lm(;st similarities between these compounds are most likely related

. . ony PIEXes to their activity as microtubule inhibitors, and the observed
exclusively associated with extreme toxicity signatures for o\ o™ " 1atad to their tubulin binding mo@&=® The
.th's group of compounds (d?“?‘ not ShOV.V”)- Whether Sb C:H1;H1;H1:S1 AAC is characteristic of the thiocolchicines
increases the targeted cytotoxicity of the thiosemicarbazone

and hydrazinecarbothioamides is a question that would nee for exam_ple, N.SC 186301 (Figure 9.A.)]' a family of We”'_
; characterized microtubule-depolymerizing compounds, while
to be addressed experimentally.

: L . the C:H1;H1;01;01 AAC is characteristic of podophyllo-
(5) Thiocolchicines and Podophyllotoxins. The . . )
C:HLH1:H1:S1 [methylthioether (Figure 9A)] and toxins [NSC 211488 and 403148 (Figure 9B)], a different

C:H1;H1;01;01 AACs [1,3-dioxo (Figure 9B)] are embed- — _
ded in chemical structures revealing a remarkable degree of(®5) Wolff, J.; Knipling, L.; Cahnmann, H. J.; Palumbo, G. Direct

1 - photoaffinity labeling of tubulin with colchicind2roc. Natl. Acad.
structural relatedness. In the case of the C:H1;H1;H1;S1 Sci. U.S.A1001 88, 2820-2824.

(56) Sackett, D. L. Podophyllotoxin, steganacin and combretastatin:

(52) Nocentini, G.; Barzi, A. Antitumor activity of 2\2bipyridyl-6- natural products that bind at the colchicine site of tubulin.

carbothioamide: a ribonucleotide reductase inhibi@en. Phar- Pharmacol. Ther1993 59, 163-228.

macol.1997 29, 701-706. (57) Luduena, R. F.; Roach, M. C. Tubulin sulfhydryl groups as probes
(53) Antonini, I.; Cristalli, G.; Franchetti, P.; Grifantini, M.; Martelli, and targets for antimitotic and antimicrotubule ageRtsarmacol.

S.; Filippeschi, S. 2/2Bipyridyl-6-carbothioamide derivatives as Ther.1991, 49, 133-152.

potential antitumor agentsarmaco1986 41, 346-354. (58) Correia, J. J. Effects of antimitotic agents on tubulin-nucleotide
(54) Antonini, 1.; Claudi, F.; Cristalli, G.; Franchetti, P.; Grifantini, interactions Pharmacol. Ther1991 52, 127-147.

M.; Martelli, S. N*-N*-S* tridentate ligand system as potential  (59) Burns, R. G. Analysis of the colchicine-binding sitgSefubulin.

antitumor agents]. Med. Chem1981 24, 1181-1184. FEBS Lett.1992 297, 205-208.
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triplicate experiments) and thymogid (r = 0.45, 0.42, and
0.46, in triplicate experiments), and are negatively correlated
with the expression of the TSSC3 geme< —0.44,—0.43,

and —0.45, in triplicate experiments).

A

o

s HN S\S
NS L)
H Discussion

We have developed a chemoinformatic analysis strategy
and applied it to the NCI's anticancer agent database to

B identify candidate molecular mechanisms conferring cell

y O type-selective anticancer drug activity. For analysis, each

N H O O N compound in a database is computationally broken down into

@;{NH @(/L(NH fragments comprised of an individual atom bonded to its
0 (0]

NSC 29228 NSC 684074 NSC 686349

O immediate neighbors (AAC). AACs are then used to identify

o associated toxicity signatures using a rigorous statistical

NSC 113764 NSC 175639 NSC 263637 comparison between compounds containing and lacking the
Figure 10. Selected compounds containing the expanded AAC. Once a toxicity signature is identified, the AAC is
(A) S1:C1;S1 and (B) C:C1;H1;N1;N1 AACs (expanded expanded, yielding a larger substructure associated with
fragments in bold). toxicity. Gene expression measurements on the 59 cell lines

are then used to infer biological mechanisms underlying the
class of well-characterized microtubule inhibitors that are associations between chemical structures and toxicity pro-
known to interact with the colchicine-binding site of tubulin.  files. This strategy should also be generally applicable to

While several extreme compounds in this cluster are neitherthe exploration of complex chemical structtHactivity

thiocholchicines nor podophyllotoxins [for example, purine relationships in large data sets.

compound NSC 111702 and styryl compound NSC 650773 At the outset, we hypothesized that individual AACs could

(Figure 9A)], key structural features necessary for tubulin serve as “markers” for larger structural motifs associated with

binding are readily apparent. specific bioactivity profiles, just as conserved amino acids

(6) Disulfides and QuinazolinonesLastly, less informa-  in the active site of proteins serve to identify classes of
tion could be gleaned by analyzing the structure of the proteins catalyzing a specific type of chemical reaction.
remaining two classes of compounds, illustrating the limita- Individual AACs could be expanded to familiar substructures
tions of the approach. The S:C1;S1 AAC characterizes associated with known drug toxicity and resistance mecha-
compounds containing a disulfide bond (Figure 10A) and nisms, confirming our hypothesis. In addition, analysis of
could not be expanded to a larger substructure templategene expression patterns allows us to infer several hypotheti-

(Figure 4). Visual inspection of these compounds revealed cal associations between specific chemical structures and

a remarkably degree of structural diversity (Figure 10A), genes over- or underexpressed in sensitive and resistant cell

represented by the diallyl sulfide (NSC 29228), dithiolenou- lines. One of these associations involves a mitochondrial/

racil (NSC 684074), and other thiopyran-containing com- P-glycoprotein detoxification axis, associated with lipophillic
pounds (NSC 686349). Like the organometallic complexes, cations harboring the N:C1;C1;C2 AAC. Another one of
disulfide-containing compounds exhibit above average toxic- these associations involves a relationship among certain
ity against all leukemic cells. This makes it difficult to classes of sulfonate compounds, phosphate prodrugs, and the
identify genes that are specifically associated with the mechanism of action of alkyl-lysophospholipid analogues.
molecular mechanism of action of these compounds. Yet another one involves an association among a variety of
The expanded C:C1;H1;N1;N1 AAC template identifies chloropyrimidines, chloropurine, and thiazole anticancer

a family of closely related quinazolinones [NSC 113764, agents and membrane transport mechanisms previously

175639, and 263637 (Figure 10B)]. These quinazolinones associated with mitochondrial toxicity. Lastly, we have

are most active against the multidrug resistant NCI-ADR and identified a large group of organosulfur compounds whose

HCT15 cell lines (Figures 2 and 3), which is suggestive of cell type-selective activity appears to be more closely

their ability to act as P-glycoprotein inhibitors as reported associated with the bound metal than with the chemical

in the scientific literatur& However, gene expression data structure of the chelator.

reveal that the activity of these compounds is correlated with  What are the advantages and disadvantages of using AACs

genes whose mechanistic significance is unclear. These gene8s a starting point for SAR studies in cell-based assays?

include histone deacetylase ©= 0.39, 0.44, and 0.46, in  Previously, it had been shown that the cell type-selective
toxicity of small molecules against multiple cancer cell lines
. is dependent on substructural mofifst?16.17This is con-

(60) Wang, S.; Ryder, H.; Pretswell, 1; Depledge, P.; Milton, J. sistent with the fact that the cytotoxic or growth inhibitory
Hancox, T. C.; Dale, |.; Dangerfield, W.; Charlton, P.; Faint, R.; . . . . h
Dodd, R.; Hassan, S. Studies on quinazolinones as dual inhibitors 2CUVItY of molecules is thought to depend on interaction with
of Pgp and MRP1 in multidrug resistandioorg. Med. Chem. protein targets. Because most of these interactions generally
Lett. 2002 12, 571-574. occur at pockets or clefts in the three-dimensional structure
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of proteins, most bioactive structures are associated with profiles are dependent on the statistical variance observed
molecules whose size and shape can be accommodated bin the bioactivity profiles.
these pockets or clefts. Yet, the usefulness of large substruc- Nevertheless, used as a starting point for exploratory
tural motifs for data mining efforts is limited by how analysis of complex structureGl profile relationships in the
substructural motifs are defined in chemical space, and by NCI database, AACs clearly offer an alternative approach
the number and diversity of compounds harboring those to more complex, substructure similarity-based searches. That
motifs. As an alternative to “fingerprinting” approaches for AACs serve as markers to identify larger structural motifs
examining many molecular descriptors in parallel to assessassociated with specific bioactivity profiles can be explained
global similarities'® AACs offer a simple, economical, all-  for the same reasons that conserved amino acids in the active
or-none measure of local similarity. Our results establish that sites of proteins are able to yield useful information about
AACs contain relevant information about a compound’s the function of an entire protein. While the AAC alone may
cytotoxicity profile. not be sufficient for determining a specific type of activity,
In the case of AACs, because the minimum number of if the AAC is embedded in a molecule and surrounded by
compounds representing each AAC is large30), the other favorable structural features, the AAC may become
contribution of a particular AAC to the cell targeting the primary determinant of the functional feature of the entire
mechanism is predetermined to be statistically significant molecule. Consistently, the results demonstrate that if AACs
from the outset. In this sense, AACs provide a highly reliable are found to be associated with specific toxicity profiles, it
marker with which to discover associations between chemicalis possible to expand the AAC into a larger substructural
structures and cytotoxicity profiles. Compared to other template that is important for the toxicity property of the
substructure-based chemoinformatic analysisir results AAC.
demonstrate that using a relatively small number of AACs  In conclusion, the ability to use AACs as a starting point
for the initial screen can aid in elucidation of larger structural for elucidating structureactivity relationships in the NCI
motifs involved in the molecule’s mechanism of action, once data set should open another window for elucidating the
the AACs are expanded. Although the starting number of molecular mechanisms targeting the activity of anticancer
AACs (747) is far smaller than the number of substructures agents to certain types of cancer cells. On the basis of
employed in other analyses, fewer false positives are similarities between the structure of the compounds and the
expected with the AACs. However, it can be argued that correlation between the activities of the compounds on
the AACs will miss some important substructures, and different cell lines with gene expression differences in those
therefore that the method is less sensitive than other methodscell lines, it has been possible to infer hypothetical relation-
To surmount this limitation, linked AACs (pairs, triplets, or  ships between the structures of compounds and their cell
n-plets) could be used as starting points to identify strueture growth inhibitory activity. While experiments are already
activity relationships. For simplicity, the current analysis was underway to test these hypotheses, the ability to derive novel,
limited to individual AACs as starting points. meaningful mechanistic hypotheses from these relationships
As a caveat, while the results demonstrate the usefulnessndicates that mining large, complex data sets should become
of this approach for studying the NCI anticancer database, increasingly relevant for anticancer drug targeting efforts.
there are also limitations to the approach that could limit its
application to other databases; identifying associations Acknowledgment. We thank G. Crippen for critical
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